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Abstract

MicroRNAs, as key regulators of gene expression, have garnered significant attention in recent antiviral
research due to their potential to modulate viral pathogenesis and host immune responses. On account
of their potential to regulate gene expression, microRNAs are currently the focus of modern antiviral
research. miR-155 is a multifunctional microRNA that plays a significant role in the regulation of the
host immune system. Predictably, it also has a profound role in the pathogenesis of numerous viruses.
Increasing research has revealed the involvement of miR-155 in various aspects of the host-viral
interface. Studies have also shown that miR-155 or its inhibitor could be used as a potential tool in viral
therapeutics and diagnostics. The current review aims to highlight viral diseases that have been
significantly modulated by miR-155. This was achieved by searching several globally recognised and
distinguished scientific databases, followed by data extraction and analysis. This work is particularly
important, as exogenous molecular control of miR-155 expression could open new avenues for limiting
viral proliferation.
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Introduction

MicroRNAs are small (19 to 24 nucleotides), single-stranded, non-coding RNAs that are primarily
synthesised from the introns (Ying, Chang & Lin, 2018; Anglicheau, Muthukumar & Suthanthiran, 2010).
Due to their ability to bind to and silence DNA post-transcriptionally, facilitated by complementarity in
their sequences, they have been widely utilised in research and therapeutic applications (Ying, Chang
& Lin, 2018; Segert, Gissel Brecht & Bulyk, 2021; Tiwari, Mukherjee & Dixit, 2018; Ganju et al., 2017;
Rupaimoole & Slack, 2017; Bernardo et al., 2015). Almost all living organisms synthesise microRNAs,
with a total of 10,000 human microRNAs identified (Friedlander et al., 2014). These small entities have
tremendous potential to modulate various gene expressions. Studies have predicted that they can
potentially target and regulate the expression of at least 30% of the entire mammalian genome (Li et
al., 2009; Xiong & Zhang, 2023). However, they exhibit distinct expression profiles in response to
specific conditions in human body. For example, immune-related microRNAs such as miR-1, miR-9,
miR-21, miR-121, miR-144, miR-155, miR-145, miR-181, and miR-146 (Chandan, Gupta & Sarwat,
2020) are increased when a pathogen invades body (Shang et al., 2023). On the other hand, miR-17—
92 cluster levels, miR-21, miR-590, and others are elevated during cancer (Peng & Croce, 2016; Hill et
al., 2025). Among them, microRNA-155 has been extensively studied as a typical multifunctional
microRNA. Existing studies indicate that miR-155 controls various pathological and physiological
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processes, such as cardiovascular diseases, immunity, haematopoiesis, inflammation, and cancer
(Faraoni et al., 2009). Increasing research has also shown that miR-155 plays a role in several viral
infections, such as neuroviruses, circulating viruses, respiratory viruses, etc. (Dickey et al., 2017).
However, its mode of functioning varies in different viruses (Jafarzadeh et al., 2021). The current review
aims to compile all the information regarding the functioning of miR-155 in different viral infections in
humans.

Biogenesis of microRNAs

MicroRNAs are tiny, non-coding RNA fragments that were first identified in C. elegans (Ying, Chang
and Lin, 2018; Friedlander et al., 2014; Dickey et al., 2017). It has now been established that they
regulate gene-expression profiles in numerous animal species at the post-transcriptional level
(Friedlander et al., 2014; Dickey et al., 2017).

RNA Polymerase Il transcribes the miRNAs, primarily from the intron regions of the genome, into
primary miRNAs (pri-miRNAs) (Kim & Kim, 2007). These are then cleaved by RNA Pol-IlI, the Drosha,
and DGCRS8 complex into shorter, 70-nucleotide long, precursor miRNAs (pre-miRNAs) (Ying, Chang
& Lin, 2018; Kim & Kim, 2007; Sarkar & Chakravarty, 2015). The pre-miRNAs then leave the nucleus
and are transported by Exportin-5 into the cytoplasm, where the enzyme Dicer undergoes further
processing, resulting in the formation of even shorter double-stranded RNA fragments (Bofill-De Ros &
Vang @rom, 2023). These miRNAs (22 nucleotides long) then bind with Argonaute and other enzymes
to generate the RNA-induced silencing complex (RISC) (Hou et al., 2024). The RISC approaches the
target MRNA, and one of the two strands in the miRNA binds with it at its 3' UTR (untranslated region),
while the other strand is degraded (Hart ef al., 2024). The binding of miRNA to the target mRNA
represses its expression either by blocking the initiation of translation or by degrading the target mMRNA
(Ying, Chang & Lin, 2018).

MicroRNA-155

The miR-155 is produced from an exon present in a non-coding RNA that is transcribed from BIC (B
cell integration cluster) on chromosome 21 (Lagos-Quintana et al., 2002). It was initially recognised in
chicken lymphomas as an oncogene. However, subsequent work revealed that it is a multifunctional
microRNA and is associated with several biological processes, including haematopoiesis, cancer,
immunity, inflammation, cardiovascular diseases, contraction of vascular smooth muscle, mediating
renal function, and viral infections (Faraoni et al., 2009; Mahesh & Biswas, 2019).

The role of MicroRNA-155 in regulating immune responses is manifold. It works in association with
diverse types of immune cells, such as definite T cell populations, B cells, macrophages, dendritic cells,
NK cells, etc. (Haasch et al., 2002; O’'Connell et al., 2007) and regulates the production of cytokines
and chemokines by them. The expression of miR-155 can alter the production of IFN-y and IL-2 by T
cells (Banerjee et al., 2010; Das et al., 2012; Gracias et al., 2013). It has been reported to facilitate the
IFN-y-dependent T cell (both CD4+ helper T cells and CD8+ cytotoxic T cells) responses to tumours
(Huffaker et al., 2012). It also enhances the maturation of T regulatory cells [21, 22], and alters the
CD8+ memory T cell: effector T cell ratio (Kohlhaas et al., 2009; Almanza et al., 2010). miR-155 targets
and represses a variety of immunoregulatory proteins, signalling molecules, and transcription factors
such as SOCS1, Jarid2, Ets1, PU.1, Fosl2, CEBPS, etc. (Wang et al., 2010; Jiang et al., 2019; Escobar
et al., 2014; Xie et al., 2018; Elton et al., 2013).

As increasing studies have proven the indissoluble association between miR-155 and immune-related
genes/proteins, it is not surprising that it plays an important role in microbial infection (Zhou, Li & Wu,
2018) (including viral infections), as host immunity is a major player in such infections (Chandan, Gupta
& Sarwat, 2020). Strikingly, there are indeed several reports that have recognised the vital role of miR-
155 in host responses to numerous viral diseases (Peng et al., 2023). This review explores how miR-
155 is associated with viruses belonging to diverse families and the infections they cause.
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Material and Methods

Globally accepted and distinguished scientific databases comprising PubMed, Scopus, Google Scholar,
Springer, ScienceDirect, and Wiley Online Library were used to search literature by focusing on specific
terms such as “microRNA-155", “virus”, “pathways”, “treatment”, and “biomarker”. Only those studies
that showed sufficient evidence of the involvement of miR-155 in host responses to viruses were
considered. West Nile Virus, Ebola, etc., were excluded from the study due to limited reports. Only
literature written in the English language was considered due to language barriers. This has used the
Preferred Reporting ltems for Systematic Reviews and Meta-Analyses (PRISMA) guidelines as

illustrated in Figure 1 (Page et al., 2021).
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Figure 1: PRISMA Fow Diagram Depicting the Systematic Selection Process of Databases for Viral
Diseases Associated with microRNA 155

DNA Viruses:
> Herpesviridae
e Herpes Simplex Virus:

Herpes Simplex Virus (HSV) causes lesions in the skin, mucosa, eyes, etc., during its primary infection.
It also invades the nervous system and establishes a lifelong latent infection there (Zhu & Viejo-
Borbolla, 2021). Intermittently, such latent infections might be reactivated (probably due to fever, stress,
exposure to UV light, etc.) and can even invade the brain, causing Herpes Simplex Encephalitis (HSE)
(Roizman & Whitley, 2013; Whitley et al., 1952). Infection in the brain in adults is generally caused by
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HSV-1, which affects the temporal lobe of the brain, causing focal haemorrhagic necrosis with fatal
consequences (Whitley et al., 2006). These lesions in the brain are a result of both the infection by the
virus and the immune responses of the host (Wang et al., 2007). MicroRNA-155 (miR-155) plays a
maijor role in this regard. Studies show that miR-155 knock-out mice were more susceptible to HSV
infection than wild-type mice. This includes both zosteriform infection (affecting the brain) and ocular
infection (affecting the eyes) (Zingale, Gugliandolo & Mazzon, 2021). The host responses (such as
astrocytosis and CD8+ T cell responses) were also found to be more pronounced in the wild-type mice
than in those where miR-155 was knocked out (Bhela et al., 2014). Reduction of CD8+ T cell responses
in the miR-155 knockout host consequently also reduced cytokines such as TNF-a and/or IFN-y (Bhela
etal., 2014).

A recent study proposed that during ocular infection caused by HSV-1, accumulation of CD4+ helper T
cells (mainly in corneas) was diminished in microRNA-155 KO hosts than wild type6 (Bhela et al., 2015).
Low frequency of Th1 and Th17 cells were also noted in HSV-infected microRNA-155 KO lesions and
lymphoid organs. When treated with Local antagomir-155, host cells also exhibited a reduction in
neutrophil infiltration to corneas and decreased the expression of IL-16, IL-1B, IFN-y, and IL-6 (Bhela
et al., 2015). The wild types are more autoimmune than the miR-155 KO host (Thompson et al., 2023).
Overexpression of microRNA-155 targeted and reduced SOCS1 in the microglial cell, which elevated
the levels of NO and cytokines. HSV reactivation has been highly associated with stress. Interestingly,
the levels of glucocorticoids increase in stress which triggers the decrease of miR-155. Hence miR155
might play an inhibitory role against HSV (Zheng et al., 2012; Mulik et al., 2012).

A contrasting study by Wang et al. stated that HSV-1 infection elevated the levels of miR-155-5p, and
this consequentially facilitated HSV-1 replication (Wang et al., 2019). They proposed that miR-155-5p
elevated the synthesis of the SRSF2 gene, which aids in the duplication of viruses. In the brain, HSV
infection has been shown to increase the expression of miR155 and different inflammatory cells
(Zingale, Gugliandolo & Mazzon, 2021). All these studies together indicate that miR155 has a profound
role in regulating the HSV infection-related immune responses (Table 1).

Epstein Bar Virus

Epstein-Barr Virus (EBV) is transmitted primarily through body fluids like saliva, blood, etc. It infects
epithelial cells of the oropharynx and parotid gland, then infects B cells and becomes latent in the body
(Damania, Kenney & Raab-Traub, 2022). However, it might cause Burkitt's Lymphoma,
Nasopharyngeal carcinoma, and other lymphoproliferative diseases in immune-compromised
individuals (Shannon-Lowe, Rickinson & Bell, 2017).

Several studies indicated that EBV-positive B cell malignancies cause up-regulation of miR-155 (Wood
et al.,, 2018; Lu et al., 2008; Wang et al., 1991). EBV carries two genes, LMP1 (Latency membrane
protein 1) and EBNA2 (EBV nuclear antigen 2), which enhance the expression of miR-155 (Wood et
al., 2018; Lu et al., 2008). Studies show that viral EBNA2 and a B cell transcription factor called
Interferon Regulatory Factor 4 (IRF4) activate host genes that encode miR-155. EBNAZ2 also promotes
the transcription of IRF-4 (L. Wang et al., 2011a). Thus, EBNA2 stimulates the synthesis of miR-155
both directly and indirectly via IRF-4 (Wang et al., 2011b). Studies have established that this up-
regulation is mediated by specific enhancers dependent on the Notch signalling transcription factor
RBPJ (Wood et al., 2018). The viral LMP-1 protein is a potential activator of NF-kB, which is essential
for EBV-mediated immortalisation of the B cells (Awasthi et al., 2022). Interestingly, miR-155 enhances
NF-kB by targeting IKKB. Lu et al. showed that inhibition of miR-155 could resist EBV-mediated
carcinogenesis in B cells by deactivation of NF-kB (Lu et al., 2008). The multiple roles of miR-155 in
EBV infection have been summarised in Table 1.
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Table 1: A Summary of the Modulation of Host Mir-1565 By Different Viruses and the Associated
Changes in the Host Immune Pathways

Sl. | Virus Cells Effect of Virus on miR- Potential use of Ref
No. affected by | 155 and corresponding miR155
the virus effect on body

1. Herpes Cellsof |¢ miR155 KO renders |Studies propose Kim and Kim (2007)
Simplex skin, cell more susceptible to | that use of | Kohlhaas et al. (2009)
Virus mucosa, HSV. antagomiRs Mulik et al. (2012)
(DNA Virus) eyes. Cells |e¢ Invasion of HSV |against miR-155 Bhela et al. (2015)

of nervous elevates miR155. |reduces lesions in Wang et al. (2011a)
system. Activation of host cell | eyes. However Whitley et al. (1982)
immune Responses |targeting miR155 Whitley (2006)
(CD8+ Tcells, CD4+ T |for HSV therapy
cells, TNF-a, IFN-y, IL- [has not yet been
1B, IL-6, IFN-y, 1L-16 |acknowledged.
and neutrophil
infiltration as an
aftermath of miR155
induction.
e  Suppression of miR155
reduces inflammation
in corneas.

2. Epstein Bar Epithelial |o¢  Up regulation of miR- | miR-155 silencing Shannon-Lowe,
Virus cells of the 155 (promoted by viral |resists EBV Rickinson & Bell
(DNA Virus) oropharynx EBNA2 protein) mediated (2017)

and parotid |¢ NF-KB activated by |carcinogenesis. Lu et al. (2008)
gland and B viral LMP-1 protein and Momen-Heravi et al.
cells miR155 (2014)
e Promotion of Wang et al. (2011b)
carcinogenesis. Wang et al. (1991)
Wood et al. (2018)
Xu et al. (2008)

3. Hepatitis C Hepatocytes | e Virus Up-regulates | MiR155 knock out Cheng et al. (2015)
Virus miR-155 via the NF-KB |diminishes  HCV Zeisel et al. (2009)
(RNA virus) and p300 pathway (in |viral load and HCV Zhang et al. (2021)

HCV genotypes, 1,2 |associated acute Zhou et al. (2021)
and 3) lymphoid
o Inhibition of Apoptosis | Leukemia in vitro
and promotion of cell
proliferation by Wnt
signaling pathway.
e Up-regulation of
Inflammatory cytokines
like TNF-a, IL-10, IFN-
y, IL-12.

4. Japanese Neuronal e Activation of miR-155 Overexpression of Bhela et al. (2014)
Encephalitis cells e Activation of | miR155 can | Campbell et al. (2011)
Virus inflammation in |[reduce JEV in Filgueira & Lannes
(RNA Virus) neuronal cells by | microglial cells. (2019)

targeting SHIP-1. Pareek et al. (2014)
o Upregulation of TNF-a, Rastogi and Singh
IL-6. IL-10, MCP-1, (2020)
IFN-y Thounaojam et al.
(2014)
Yun and Lee (2013)
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5. SARS-CoV-2 Alveolar Activation of miR-155in |Can serve as a | Arghiani et al. (2021)

(RNA Virus) cells acute and post-acute |potential Donyavi et al. (2021)
phases. Biomarker to Ganju et al. (2017)
Activation of IL-1 | detect disease Hu et al. (2021)
signaling pathway. severity of and Kassif-Lerner et al.
MiR-155 has a role in |death. (2022)
the synthesis of ACE2 Kooshkaki et al.
(Receptor of SARS- |AntagomiR-155 (2020)
CoV-2) can serve as a | Widiasta et al. (2020)
Repression of miR-155 treatment strategy. Soni et al. (2020)
could inhibit cytokine Singhal et al. (2020)

6. Influenza A Epithelial Activates miR-155 miR-155 gene Izzard et al. (2014)
Virus cells of Enhancement of CD8+ |incorporated in the Shen et al. (2020)
(RNA) respiratory T cell responses and |IAV vaccine

tract antibody responses. exhibits enhanced
Overexpression of | immunogenicity
miR-155 increases the |against the Virus.
amount of IL-6, IFN-B
by targeted inhibition of
SOCS-1.

7. Hepatitis B Hepatocytes Inhibition of miR-155 | Ectopic expression Chen et al. (2020)
Virus mediated through | of miR-155 could Nguyen et al. (2020)
(Reverse down-regulation of | decrease the HBV Sarkar and
Transcribing TLR7 viral load in vitro. Chakravarty (2015)
Viruses) miR-155 silencing Sarkar et al. (2015)

impairs NK cell Tang et al. (2018)
responses in chronic Yu et al. (2016)
HBV patients.

Over-expression of

miR-155 can decrease

viral load by targeted

inhibition of CEBP-B

and activating immune

responses through

JAK-STAT pathway.

8. Human CD4 T cells Activation of miR-155 MiR155 can be Jin et al. (2016)
Immunodefici Activation of T cells and | used as a | Campbell-Yesufu and
ency Virus host immunity biomarker to detect Gandhi (2011)
(Reverse miR-155 can diminish |immune (German Advisory
Transcribing HIV infection by |Responses Committee Blood,
Viruses) targeting HIV-1 |against HIV 2016)

dependency factors infection Cheng, Lin & Cheng,
(2021)
Dey et al. (2016)
Ruelas et al. (2015)
Swaminathan et al.
(2012)
Zhang et al. (2021)

RNA VIRUSES

> Flaviviridae
¢ Hepatitis C Virus

The Hepatitis C virus (HCV) infects hepatocytes causing chronic liver inflammation, and is transmitted
either vertically from pregnant mother to child or horizontally through contaminated blood and semen
(Cacoub & Comarmond, 2017; Ganta et. al., 2018).

Numerous studies have found that miR-155 levels are upregulated during HCV infection, primarily
mediated by NF-kB (Bala et. al., 2012; Zhang et. al., 2012). Zhang et al., 2021 reported that this NF-KB
mediated up-regulation of miR-155 was increased by p300 (Zhang et. al., 2012). A rise in miR-155
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levels resulted in the accumulation of B-catenin and an increase in the levels of c-myc and survivin, and
this consequently inhibited apoptosis and promoted proliferation of the cells via the Wnt signalling
pathway (Zhang et. al., 2012). On the other hand, inhibition of miR-155 triggered G0/G1 arrest (Zhang
et. al., 2012). In another study from Egypt, Hassan et. al., 2020 showed that knock out of miR-155 in
vitro diminishes HCV viral load in HCV associated acute lymphoid leukemia (Hassan et. al., 2020). In
addition, Bala et al. (2012) demonstrated that increased miR-155 levels in HCV-infected cells
augmented inflammation by up-regulation of the cytokine TNF-a and resulted in Inflammation mediated
hepatocyte damage Zhou et al. (2021) also reported a similar rise in TNF-a corresponding to higher
levels of miR-155 in CD14+ monocytes from HCV-infected patients They reported increased expression
of the JNK, IL-10 and IL-12, and Tim 3 genes Cheng et al.(2015) after a few years, found that Tim-3 is
overexpressed in HCV infected natural killer (NK) cells where miR-155 was down-regulated, but
reconstitution of miR-155 enhanced IFN-Y productionvia phosphorylation of signal transducer and
activator of transcription 5 (STAT-5). All these together indicate that miR155 facilitates the progression
of disease during HCV infection (Table 1). Interestingly, El-Ekiaby et al. (2012) reported a HCV
genotype dependent differential modulation of miR-155. Precisely, they found that miR-155 levels were
down-regulated in peripheral blood mononuclear cells (PBMCs) infected with particularly HCV genotype
4 (GT4) (in contrast to infection with HCV genotypes 1, 2, and 3 where miR155b was up-regulated).

Japanese encephalitis virus (JEV)

Japanese encephalitis (JE) is a kind of viral disease in which the flavivirus is transmitted by mosquitoes
and infects neuronal cells (Yun & Lee, 2013) It invades the central nervous system resulting in the
inflammation of the brain and might lead to serious conditions like encephalitis (Filgueira & Lannes,
2019). Campbell et al. (2011) reported that fatality in JEV-infected individuals can soar up to 30%
(Campbell et.al., 2011).

Thounaojam et al. (2014) found that miR155 levels were increased during JE infectionThey also proved
that thisincrease in miR-155 levels triggers Inflammation in neuronal cells by blocking its target SHIP
(Src Homology 2 containing inositol Phosphatase-1) and enhancing the synthesis of inflammatory
cytokines (IL-6,TNF-a, MCP-1) and interferon-f through activation of TBK-1 (Tank Binding Kinase-1).
They proposed that modulation of miR-155 could be used as a therapeutic option in managing JE
(Campbell & Gandhi, 2011). Additionally, Pareek et al. (2014) affirmed that over-expression of mir155
in microglia is associated with the reduction of JEV reproduction and elevation of IFN-B, TNF-qa, IL-10,
and other interferon-stimulated genes. They proposed that induction of miR-155 may be beneficial in
limiting the virus). Another independent report by Rastogi reveals that JEV-mediated up-regulation of
miR-155 inhibits the non-canonical NF-kB pathway via TRAF-3 and PELI-I in human microglial cells
(Rastogi & Singh, 2020).

» Coronaviridae:
¢ SARS-CoV 2:

The novel SARS CoV-2 infection caused a severe pandemic and almost crippled the world since 2019
when it was first detected. It is a type of Corona Virus that has been found to affect the respiratory
systems in humans and bears a history of zoonotic transfer from bats. The manifestations in the host
are largely dependent on the host's immune responses post-infection. This ranges from low or moderate
infection causing fever, cough, loss of smell and taste, etc., but may even lead to pneumonia-like
symptoms and death (Hu et al., 2021). The severity of this infection is generally caused by a cytokine
storm that takes place as an aftermath (Singhal, 2020; Kooshkaki et al., 2020).

Donyavi et al. (2021) established that the levels of miR-155-5p were significantly high in the Peripheral
Blood Mononuclear cells (PBMCs) from COVID-19 patients in acute and post-acute phases than in
healthy controls. He proposed that it could be used as a potential circulating biomarker to detect the
severity of the disease Several other independent studies also had similar findings. They proposed that
the up-regulation of miR-155 is in coordination with the heightened Inflammation among acute and post-
acute patients (Xiao et. al.,, 2019; Han, Li & Jiang, 2016). The increased levels of miR-155 ininfected
patients could indicate body inflammation and cardiac myocyte-specific damage. Kassif-Lerner et al.
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(2022) showed that miR-155 could be used as a prospective biomarker for predicting death in SARS-
CoV-2 infected patients. Arghiani, Nissan and Matin (2021); demonstrated that the upregulated miR155
levels trigger the IL-1 signaling pathway, and therefore, its appropriate management could limit the
Inflammation caused by the virus. Interestingly, Soni et al. (2020) validated that the repression of miR-
155 could decrease the lung cytokine storm induced by covid-19Strikingly, in addition to this, Widiasta
et al (2020).; proved that miR-155 had a role in the synthesis of ACE2 (angiotensin-converting enzyme
2) which happens to be a receptor for SARS-Cov 2 and facilitates its entry into host cells. Thus,
antagomiRs against miR-155 could be used as a treatment strategy to combat Sars-CoV2 infection.

» Orthomyxoviridae:
¢ Influenza A Virus:

The Influenza A Virus (IAV) is one of the four influenza viruses that affects the epithelial cells of the
respiratory tract (Shen et al., 2020). Though rarely may also lead to acute respiratory distress syndrome
(ARDS) and death. miR155 has been extensively studied in the context of IAV. Infection with IAV
elevates mir155 (Shen et al., 2020). It enhances CD8+ T cell responses and specific antibody
responses inpatients infected with IAV (lzzard et al. 2014). lzzard et al. (2014) proposed that
overexpression of miR-155 in IAV infected cells consequentially facilitated the amount of IL-6 and IFN-
B in the human body system by targeted inhibition of SOCS1. Shen et al. (2020) showed that miR155
enhances inflammatory responses against IAV by targeting S1PR1 (sphingosine-1-phosphate receptor
1 In two independent studies, Rodriguez and Thai et al. revealed that the miR-155 KO host could not
create a proper humoral defence against IAV infection. On the other hand, Gracias et al. (2013) found
that miR155 enhances influenza-specific CD8+T responses cells in transgenic mice. Izzard et al. (2014)
designed a vaccine where he integrated the miR-155 gene with the IAV genome and showed enhanced
immunogenicity against the virus.

Reverse Transcribing Viruses

» Hepadnaviridae:
o Hepatitis B virus:

The hepatitis B virus (HBV) is a DNA virus with a genome that is partially double-stranded. It infects the
liver cells (hepatocytes) that may lead to fatal liver diseases like Liver Cirrhosis and Hepatocellular
carcinoma (Nguyen et al., 2020). The outcome of this infection is highly dependent on the host's immune
responses, so miR155 plays a major role in it (Nguyen et al., 2020; Tang et al., 2018).

Several studies independently showed that HBV suppresses miR155 in Peripheral Blood mononuclear
cells (PBMCs) and liver cells (Yu et. al. 2016; Ge et. al., 2017). They have proposed that the virus
paralyses the host immune system and inflammatory responses to establish itself since various
cytokines and Interferons were also found to be down-regulated during infection (Yu et. al. 2016; Ge et.
al., 2017; Su et al., 2011). Sarkar et al (2015) proposed that this down-regulation of miR155 resulted
as an aftermath of TLR7 inhibition by HBV (2015). Ge et al. showed that reduced expression of miR155
impairs Natural Killer cell responses in chronic HBV patients (2017), whereas Chen et al. 2020 showed
that microRNA-155 regulates HBV replication by contributing to autophagy induced by SOCS1
signalling (Chen et. al., 2020).

Su et al. overexpressed miR155 ectopically in hepatoblastoma cell lines and found that it mildly inhibits
HBV by activating innate immune responses mediated through the JAK-STAT pathway. Likewise,
Sarkar et al. also found that overexpression of miR155 suppresses HBV replication through targeted
inhibition of the transcription factor- CEBP-B (Sarkar et al., 2015).

»> Reoviridae:
¢ Human Immunodeficiency Virus:

Human Immunodeficiency Virus (HIV) is communicated through body fluids like blood, semen etc. and
infects the CD4+ T cells in the blood, thereby reducing their count. This results in severe immune
deficiency leaving the body susceptible to secondary infection (German Advisory Committee Blood,
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2016). When the CD4+ T cell count drops below 200 per mm3 of blood, the condition is termed Acquired
Immunodeficiency Syndrome (AIDS) (Battistini et. al., 2022).

Jin et al. (2016) suggested that the levels of miR-155 are up-regulated in the PBMCs of HIV-1 positive
patients and that this could be associated with the activation of T cells. Zhang et al. (2021) also re-
confirmed this finding, stating that higher miR-155 levels could be an indicator of immune activation
(Zhang et al., 2021). Jin et al. (2016) further proposed that miR-155 could be used as a biomarker to
detect immune responses against HIV-1 infection. Another independent study established that miR-155
has the potential to reinforce latency in HIV patients who had a sudden reactivation of infection following
latency (Ruelas et al., 2015). Swaminathan et al. (2012) showed that miR-155 could diminish HIV-1
infection by targeting numerous HIV-1 dependency factors. In another study from the Indian
Subcontinent, Dey et al. (2016) established that the levels of miR-155, along with miR-382-5p, were
significantly higher in HIV patients with regular disease progression compared to long-term non-
progressors, and these miRNAs could be used as an indicator to distinguish the two groups.

Discussion

The outcome of viral infections is largely dependent on the host. Evidently, host factors, if managed
properly, can be effectively used to curb viral pathogenesis. Because of their potential to regulate gene
expression, microRNAs are currently the focus of modern antiviral research. These small RNAs and
their inhibitors can be efficiently delivered to the host via exosomes and liposomes (Momen-Heravi et
al., 2014). In this respect, miR-155 has been profoundly studied in several viral infections (Table 1). Its
capacity to trigger numerous inflammatory cytokines and antiviral interferons is manifold. It can
effectively stimulate the humoral (specific antibodies) and cell-mediated (CD4+ and CD8+ T cells) arms
of adaptive immunity (Haasch et al., 2002; O’Connell et al., 2007). Though it is highly likely that miR-
155 could favour the host in the process of viral elimination, there are a number of viruses (HSV, EBV,
HCV, SARS) where it increases the chances of amplified inflammation and carcinogenesis. Antagonists
against miR-155 have proven to have promising results in limiting EBV and HCV-mediated
carcinogenesis and also cytokine storms during SARS-CoV-2 infection (Lu ef al., 2008; Widiasta et al.,
2020). Appropriate testing through human clinical trials could open up new treatment options.

After reviewing several literatures available online, this could not find any correlation between the
mechanisms of miR-155 mediated viral clearance and the type of cells that harbour the virus. Of the
studied viruses, some affect the neuronal cells, some affect the immune cells, some paralyse the cells
of the respiratory tract, and others affect hepatocytes. Interestingly, the level of miR-155 is elevated in
all of these cells upon viral invasion, with the exception of HBV in hepatocytes, where miR-155 is down-
regulated. Obviously, the viral nucleic acids trigger the expression of Toll-like receptors (TLRS3, 4, 7, 8),
which eventually activate miR-155 through the downstream TRIF-MyD88 signalling pathway
(Jafarzadeh et al., 2021). However, HBV suppresses TLR7 and thus represses miR-155 (Sarkar et al.,
2015).

miR-155 has potential in viral clearance in the case of both HBV and HIV. Interestingly, both of these
viruses have shared means of transmission, and about 10-20% of HIV-positive patients across the
globe are co-infected with HBV (Cheng, Lin & Cheng, 2021). Activation of miR-155 could be a novel
treatment option in such cases, as miR-155 imparts both anti-HBV and anti-HIV effects by targeting key
HIV and HBV dependency factors (Swaminathan et al., 2012; Sarkar et al., 2015).

A very significant finding in this regard is that the incorporation of miR-155 in the AV vaccine enhances
its immunogenicity. Thus, the use of miR-155 as an adjuvant while designing vaccines or immune
therapy could also be tested in other viral infections.

Owing to its vital role in the mediation of inflammation, miR-155 could also serve as a biomarker to trace
disease progression. Excess miR-155 levels are suggestive of severe damage to the host, as has been
proved in the case of HIV (Jin et al., 2016). In SARS-CoV-2 infection, it could even predict death
(Donyavi et al., 2021; Soni et al., 2020).
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Conclusion

MicroRNA-155 exhibits a multifaceted role during viral infections, whereby in the case of certain viruses,
it supports viral pathogenesis, while in others it prevents it. Nevertheless, it can also be used as a
biomarker. Appropriate studies in animal models and clinical trials could offer promising insights. This
is particularly important as the exogenous control of miR-155 expression might provide a new
alternative to confine viral proliferation.
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