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Abstract

Recently, the emergence of bacteria impenetrable to antibiotics has led to a devastating situation
concerning international health. This study identified one of the most threatening bacteria, methicillin-
resistant Staphylococcus aureus. The potential antibacterial properties of Neprolepis exaltata include
its ability to inhibit the growth of Staphylococcus aureus. Methicillin-resistant Staphylococcus aureus
(MRSA) is not effectively susceptible to methicillin antibiotics. Methanolic crude extracts of Neprolepis
exaltata were tested against Methicillin-resistant Staphylococcus aureus at 30 pg/mL and 40 ug/mL
concentrations using the agar disc diffusion technique; 18 mm and 20 mm inhibition zones were
reported. Furthermore, the dilution method, the crude extract's minimum inhibitory concentration
(MIC) was tested against Methicillin-resistant Staphylococcus aureus at concentrations of 20, 40, 60,
80, and 100 pg/mL. The MIC value of the crude extract was found to be 40 ug/mL. Furthermore,
crude methanolic extracts of Neprolepis exaltata were subjected to GC-MS analysis, and 22
phytochemicals were identified. Compound 2, 3-Diazabicyclo [2.2.1] hept-2-ene, has shown the
highest binding affinity of -6.6 kcal/mol based on molecular docking. Molecular dynamics (MD)
simulations determine the structural dynamics of the sphingosine kinase 1 complex with ligands (2ME,
BEN, ARC). Factors such as RMSD, RMSF, Rg, SASA, and H bonding were examined to investigate
the dynamic changes in ligand binding. The RMSD revealed stable equilibration within 10 ns,
illustrating stability throughout the 100 ns simulation. The RMSF results indicate that ligand binding
influences the flexibility of the protein, as indicated by the lower fluctuations for 2ME and BEN. Ligand
binding increased solvent accessibility, and the greater compactness of the complex systems was
indicated by Rg and SASA values. The stable interactions of H bonds were examined, and principal
component analysis confirmed the lower flexibility of the ligand-bound complexes. The MM-PBSA
method revealed the binding affinity of van der Waal energy, electrostatic energy, polar solvation
energy, and binding energy of 1IMWS-2ME, 1MWS-BEN, and 1TMWS-ARC.
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Introduction

The global issue of antibiotic resistance necessitates strategies for successfully combating bacterial
disease. To fight bacterial illness, it must adopt alternative methods in response to the difficulties of
antibiotic resistance. The bacterium known as "staph,” Staphylococcus aureus, is one of the main
causes of this issue. Methicillin-resistant Staphylococcus aureus (MRSA) is a common bacterium
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found in sugar factories and other food production industries, the environment, and normal human
flora on the skin and mucous membranes (Stapleton & Taylor, 2002; Peacock & Paterson, 2015). The
most common human pathogen, gram-positive methicillin-resistant Staphylococcus aureus, is
responsible for various clinical infections and illnesses. The annual incidence rate of Methicillin-
resistant Staphylococcus aureus infection is 20-50 cases per 100,000 people, with a death rate of
10-30% worldwide (Baddour et al., 2015). Staphylococcus aureus is the most prevalent agent that
causes infections of the skin and soft tissues, as well as skin abscesses, furuncles, and carbuncles.
Severe muscle or bone infections can result from skin and soft tissue infections, which often begin as
abscesses or small boils. They may also spread to the lungs or the heart valves, which can cause
endocarditis. Since the main components of the bacterial cell wall are peptidoglycans, the integrity of
the cell wall controls bacterial survival during growth and cell division. Penicillin-binding proteins
(PBPs) use their transpeptidase domain to crosslink peptidoglycans. Because PBPs are essential for
bacterial survival, they are attractive targets for antibiotics, particularly p-lactams. When 3-lactam
antibiotics attach to the transpeptidase domain of Penicillin-binding proteins, peptidoglycan
crosslinking is prevented. Therefore, B-lactams can effectively block Penicillin-binding proteins and
eradicate bacterial infection. In addition to native Penicillin-binding proteins, Methicillin-resistant
Staphylococcus aureus has a resistance determinant called Penicillin-binding protein 2a, a low-affinity
penicillin-binding protein. The methicillin resistance (mecA) gene encodes Penicillin-binding protein 2a
(Tabassum et al., 2023).

Neprolepis exaltata is useful for removing harmful air pollutants from the environment by naturally
adding moisture to the air. Boston Ferns not only restore interior air quality but also increase humidity.
Neprolepis exaltata has been shown to have antioxidant and anti-inflammatory properties (Swain et
al., 2025; Sharma, Dave & Shah, 2021). The antibacterial efficacy of Neprolepis exaltata against
Staphylococcus aureus was investigated using the disc diffusion technique. The primary objective
provides a visual representation of the antibacterial properties of Neprolepis exaltata and their impact
on inhibiting bacterial growth. In addition to the disc diffusion method, laboratory-based MIC tests
were also conducted to evaluate the antibacterial activity further. These MIC tests offered insights into
the metabolic activity and potential growth inhibition induced by Neprolepis exaltata samples in the
broth. This approach enables analysis of the minimum inhibitory concentration (MIC) of the
substance, indicating that the resultant solution is effective (Arshad, Mohiuddin & Azmi, 2012;
Manandhar, Luitel & Dahal, 2019). The discovery of chemical compounds that can exhibit
antibacterial properties against Staphylococcus aureus in Neprolepis exaltata via molecular docking
was attempted. Molecular docking involves analysing the various chemical compounds of plants and
identifying those that effectively interact with specific bacterial targets. Our endeavour is centred on
deploying in silico screening to determine the bioactive phytochemicals that increase the potential of
Neprolepis exaltata as an antibacterial agent. The primary goal is to cautiously examine Neprolepis
exaltata and determine the potential of antibacterial drugs via a computational approach. The use of
molecular docking software energetically enhanced the molecular structure of the compounds, which
were subsequently docked into the crystal framework of a key protein target in Staphylococcus
aureus. Understanding the binding affinity of these bioactive compounds with the target protein and
their activity in other locations. These analyses of docking scores and a detailed examination of
intermolecular interactions, such as hydrogen bonding, were performed. These determinations set the
level for further molecular dynamics simulations to elucidate the dynamic behavior and stability of the
ligand-receptor structure, thus offering additional confirmation that the compound from Neprolepis
exaltata could function as a positive antibacterial agent against Staphylococcus aureus. Molecular
dynamics simulations significantly affected the dynamic behaviour of the ligand-receptor complex. The
probable ligand-receptor configuration was the focus of a strong simulation software analysis. The
simulation provided a dynamic view of interactions within the complex as well as stability and
fluctuation over time. MD simulations were performed to investigate the dynamic changes that occur
upon binding of the target protein. Several parameters, such as RMSD, RMSF, Rg, SASA, and inter-
and intramolecular hydrogen bonding, were calculated for both the protein and protein-ligand
complex. The Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF) were
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used to examine the overall stability and flexibility of the complex during the simulation period. The
Radius of Gyration (Rg) represents the distribution of atoms from their common centre of mass, and
the Solvent Accessible Surface Area (SASA) measures the surface area of a biomolecular structure
accessible to solvent molecules. Molecular simulation assists in analysing a molecule's interaction
with its environment. It provides insight into how active compounds in Neprolepis exaltata combined
with Staphylococcus aureus function as antibiotics at the molecular level (Gurung et al., 2021; Samad
et al., 2022).

Materials and Methods
Preparation of Plant Material

The plant samples were collected from the Ooty Hills and subjected to a standard tap water rinse to
eliminate any residual dust. Subsequently, the plants were thoroughly washed with distilled water, and
the plant material was air-dried at 37°C for two to three weeks. Once dried, the plant material was
pulverised using a mortar and pestle. A cold extraction method utilising methanol as the solvent was
used to prepare the plant extract (Ouandaogo et al., 2023).

GC-MS Analysis

Plants are an abundant source of secondary metabolites with structural configurations and biological
activities. Gas chromatography, particularly gas-liquid chromatography, is often employed to analyse
these metabolites. A sample is vaporised and then injected into the head of the chromatographic
column. An inert gaseous mobile phase transports the sample through the column, with an inert solid
surface covered with a liquid phase. This separation is based on adsorption and partitioning, essential
concepts in gas chromatography (Al-Rubaye, Kaizal & Hameed, 2017).

Kirby Bauer Disc Diffusion Method

In this method, a standardised suspension of microorganisms is spread onto the surface of an agar
plate. Filter paper discs or sterile commercial blank discs are used for impregnation with the plant
solution and allowed to dry before being placed on agar plates. A filter paper disc containing 30 ug/mL
and 40 pg/mL substance was placed on the agar surface. Standard ciprofloxacin discs (30 pg/disc)
were used as the positive control, and methanol as the negative control. After incubation, the plate
was examined for zones of inhibition where bacterial growth was inhibited around the disc. The size of
the zone of inhibition was measured and correlated with the susceptibility of the microorganism to the
test substance (Bubonja-Sonje, KneZevié & Abram, 2020; Septama & Panichayupakaranant, 2015).

Broth Dilution Method

The broth dilution test is the earliest method for assessing antibacterial susceptibility. This method
includes preparing twofold dilutions of plant extract and broth in a liquid growth medium delivered in
test tubes. A standardised bacterial suspension was introduced into concentrated plant extract-
containing tubes. Methanol was used as the negative control, and standard ciprofloxacin discs (30
pg/disc) were used as the positive control. After an overnight incubation at 35°C, the tubes were
checked for visible bacterial growth, as indicated by turbidity. The lowest inhibitory concentration
(MIC) is the lowest concentration of antibiotic that prevents growth (Acs et al., 2018).

Molecular Docking

Molecular docking is an increasingly indispensable tool in drug discovery, enabling the simulation of
small-molecule-protein interactions at the atomic level. This technique provides insights into the
behaviour of small molecules within target protein binding sites and helps elucidate key biochemical
processes. Docking involves two key steps: sampling ligand conformations within the protein's active
site and ranking these conformations using a scoring function. Effective sampling methods should
replicate the experimental binding mode, with the scoring function accurately ranking it highest among
all conformations generated (Meng et al., 2011).
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Protein Preparation

The structure of penicillin-binding protein 2a (PBP2a) from methicillin-resistant Staphylococcus aureus
strain 27r was retrieved from the Protein Data Bank (PDB) under the accession code 1MWS. The
PDB files were imported into Discovery Studio for initial processing. The protein structure underwent
preparation steps to optimise it for molecular docking studies. First, water molecules (B chains) were
removed from the structure to streamline the model. Additionally, chloride ions present in the crystal
structure were eliminated to maintain focus on the protein's primary structure. The modified protein
structure was saved in PDB format for subsequent docking analyses (Mohamed et al., 2019).

Ligand Preparation

The chemical structures of the phytochemical compounds in Neprolepis exaltata were obtained from
the PubChem website. Both two-dimensional (2D) and three-dimensional (3D) representations of
these structures can be downloaded in PDB format (Gunasekharan et al., 2021).

Process of Docking

Docking was performed using the software applications "AMDOCK" and "AUTODOCK." A docking
methodology was used to determine the binding affinity of the phytochemical compounds for the
target protein. Initially, a project was defined by its name and location. Sample 1 was then loaded with
1MWS, the target protein that had previously been modified to eliminate its chloride and water chains.
The 3D or 2D structures of the phytochemical substances found in the plant sample were then loaded
into Sample-2 (Ligand). After the method was completed, the binding affinity between the ligand and
target protein of the phytochemical compounds was evaluated (Morris & Lim-Wilby, 2008).

Molecular Dynamics Simulation

Molecular Dynamics (MD) simulations were used to analyse protein structure dynamics and ligand
interactions. The MD simulations examine the molecular systems at the atomic level of protein-ligand
interactions. Many metrics were computed, including RMSD, RMSF, Rg, SASA, and H bonding for the
protein and the protein-ligand complex. Principal component analysis (PCA) and free energy
landscape analysis were also performed on the simulation's 100 ns trajectory (Adejoro et al., 2020).

System Preparation for Molecular Dynamics Simulation

The protein-ligand complex active sites were submerged in a sphere of water molecules with a
transferable intermolecular potential of 3 points. The systems included between 8,000 and 12,000
atoms, and a half-harmonic potential was provided at the solvent border to inhibit water molecule
evaporation. The ligand, water molecules, and protein residues within 12 A of the active centre were
allowed to move. In contrast, other protein residues were restrained to the X-ray structure using a
harmonic energy term in all molecular mechanics (MM), including energy minimisation and MD
simulations (Adejoro, Babatunde & Tolufashe, 2020).

Results

Crystal Structure of Penicillin Binding Protein (PBP)

The structure of nitrocefin acyl-penicillin binding protein 2a (PBP2A) of methicillin-resistant
Staphylococcus aureus strain 27r, which was resolved at 2.00 A, provided important information on
how PBP2A and Nitrocefin, an antibiotic analogue of cephalosporin, interact. Antibacterial
medications and complex processes underlying antibiotic resistance are used to identify the targets
via high-resolution guidance. This unique PBP2A variation proved the antibacterial activity of
Neprolepis exaltata against Staphylococcus aureus.

Gas Chromatography-Mass Spectrometry (GC-MS) analysis

The presence of 22 phytochemicals (Table 1) was identified using the crude methanolic extracts of
Neprolepis exaltata by GC-MS. Each detected component of Neprolepis exaltatacontributed to the
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overall chemical makeup of the plant extract, shedding light on the probable bioactive elements
responsible for its synergistic impact on its antibacterial activity (Figure 2)
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Figure 2: GC-MS Data of NeprolepisExaltata - 22 Phytochemicals

Table 1: Phytochemical Profile of NeprolepisExaltata

Peak # R. Time Area Area% Name

1 5.750 180293 1.12 1,2.3-Propanetriol

2 5.812 1007849 6.26 2-(Methoxymethyl) Pyrrolidine

3 5.964 249324 1.55 Butanedioicacid, methoxy-, dimethyl ester
4 13.213 201883 1.25 DL-Proline, 5-oxo-, methyl ester

5 13.440 329614 2.05 Alfa.- Copaene

6 15.875 198645 1.23 Benzoic acid,4-Hydroxy-Methyl

7 16.500 1223967 7.60 1H-Cyclopenta [1,3] cyclopropa[1,2] benzene
8 18.293 155687 0.97 Cyclohexene, 6-Ethenyl-6-Methy

9 20.759 241713 1.50 N,3-Diethyl-3-octanamine

10 22.510 343664 213 2H-Cycloprop|clindene-2.3(3ah)-dione,Hexa
11 26.881 1348966 8.37 Neophytadiene

12 26.965 309035 1.92 3-(Methoxymethyl)-2,5,5,8A-Tetra

13 27.517 223017 1.38 3,7,11,15-Tetramethyl-2-hexadecen-1-ol
14 28.332 138195 0.86 7,10,13-Hexadecatrienoicacid, methylester
15 29.119 1394255 8.66 Hexadecanoicacid, Methyleste

16 30.914 2497138 15.50 (S, Z)-Heptadeca-1.9-dien-4,6-diyn-3-ol
17 32.268 890720 5.53 2,3-Diazabicyclo [2.2.1] hept-2-ene

18 32.966 1707232 10.60 9,12-Octadecadienoicacid (Z, Z)-, methyl est
19 33.085 1691612 10.50 9,12,15-Octadecatrienoicacid, methyl ester.
20 33.338 1469305 9.12 2-Hexadecen-1-OL,3,7,11,15-Tetram

21 33.710 149933 0.93 Methyl stearate

22 37.460 155673 0.97 3-Phenylpropanoicacid, dodec-9-ynylester
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Kirby Bauer Antibacterial Efficacy of Neprolepis exaltata

An antibacterial experiment performed on crude extracts of Neprolepis exaltataagainst methicillin-
resistant Staphylococcus aureus revealed good antibacterial activity. The agar disc diffusion method
showed considerable zones of inhibition at 30 ug/mL and 40 ug/mL doses, with reported values of 18
mm and 20 mm, respectively (Table 2).

Table 2: Antibacterial Assay of Methicillin-Resistant Staphylococcus Aureus Using Neprolepis
exaltata

Concentration of plant sample (ug/mL) Zone of Inhibition (mm) Interpretation
30 (ug/mL) of sample 18 Sensitive
40 (ug/mL) of sample 20 Sensitive
Ciprofloxacin-30ug/disc 25 Sensitive
(positive control)

Methanol (negative control) 0 Resistant

Minimum inhibitory concentration (MIC) determination

The broth dilution technique evaluated various quantities of crude extracts from Neprolepisexaltata
against methicillin-resistant Staphylococcus aureus. The observed minimum inhibitory concentration
was significant, with a reported value of 40 ug/mL (Figure 3). These findings indicate that
Neprolepisexaltata has potential antibacterial effects against Methicillin-resistant Staphylococcus
aureus, suggesting a dose-dependent influence on bacterial growth inhibition.

Molecular docking

The significant interactions between the ligand and protein provide insights into the activity of
penicillin-binding protein 2a. Among those phytochemical compounds, 2,3-diazabicyclo [2.2.1] hept-2-
ene showed the highest binding affinity of -6.6 Kcal/mol (Table 3).
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Figure 3: Graphical Representation of The Minimum Inhibitory Concentration of The Broth Dilution
Method

Table 3: Molecular Docking Analysis of Phytochemical Compound

p 2, 3-Diazabicyclo [2.2.1] hept-2-ene
oses
Affinity (KCAL/MOL) Estimated Ki Ki Units Ligand
1 -6.6 14.53 uM -0.44
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Molecular Dynamics Simulation

In the molecular simulation, all atoms were analysed for the structural dynamics of the sphingosine
kinase 1 complex and interactions with ligands (2ME, BEN, ARC).

Structural Dynamics and Stability

According to the RMSD data, both the APO form and ligand-bound complexes achieved equilibrium
within 10 ns, and the remaining stability was attained throughout the 100 ns simulation. The RMSD of
TMWS-APO decreased after binding with the ligands (APO, BEN, and ARC), implying that these
complexes are stable and exhibit minimal fluctuations (Figure 4)

| | 1
0 10 20 30 40 50 60 70 80 90 100
Time (ns)

Figure 4: Conformational dynamics of TMWS-APO, 1MWS-2ME, 1MWS-BEN, and 1TMWS-ARC
complex

Residue fluctuation

RMSF analysis was carried out to assess the effect of ligand binding on the fluctuation of each
residue in the protein. The results showed that the binding of ligands (2ME, BEN, ARC) did not
considerably alter the overall RMSF distribution. Compared with those of the APO form, the
fluctuations of the 2ME and BEN complexes decreased, suggesting a stable effect on ligand binding
(Figure 5).
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Figure 5: Conformational Dynamics of IMWS-APO, 1TMWS-2ME, 1MWS-BEN and TMWS-ARC
Complex

Compactness and Stability

The Radius of Gyration (Rg) was then calculated to determine the dynamic stability and compactness
of the protein and its complexes in terms of space-occupied dimensions. The Rg values for the
complexes (1MWS-2ME, 1TMWS-BEN, and 1TMWS-ARC) are slightly smaller than the Rg values of the
apo complex, indicating that the complex system is more compact and more stable than the apo

39



Sivaraman et al.
Int J Adv Life Sci Res. Volume 8(3),33-46

complex. The Rg Values are well supported and confirmed by the RMSD and RMSF analysis results,
indicating that oriented and docked protein complexes are stable (Figure 6).
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Figure 6: Dynamic Stability and Compactness of APO and its 2ME and BEN Complexes
Solvent Accessibility

The solvent-accessible surface area (SASA) was used to determine the protein's accessibility in the
solvent, but a slight increase in SASA values of APO upon binding with 2ME, BEN, and ARC as
ligand binding can expose the residues on the inside to the surface; hence, the fair equilibration of
SASA values in a span of simulation represents balanced solvent accessibility (Figure 7).
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Figure 7: SASA Values Determine the Impact of 2ME, BEN, And ARC Binding on The Solvent
Accessibility of TMWS

Hydrogen Bonding

Investigating time-dependent intramolecular and intermolecular hydrogen bonds revealed the stability
of protein-ligand interactions. Despite these fluctuations, many H bonds were maintained between
2ME, BEN, and ARC, supporting the stability of the docked complexes (Figure 8 and 9).
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Figure 8: Intramolecular H Bonds Between 2ME, BEN, and ARC During the Simulation Time
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Figure 9: Intermolecular H Bonds Between 2ME, BEN, and ARC During the Simulation Time

Principal Component Analysis (PCA)

PCA explores the collective movement in the complexes. The reduced flexibility observed in the 2ME,
BEN, and ARC complexes implies stability. The overlap in conformational motions between APO and
the complexes further supports the stability of the 2ME complex, suggesting that 2ME did not
significantly affect the conformation or dynamics of the 1IMWS complex.

Table 4: MM-PBSA Binding Affinity of 1IMWS-2ME, 1IMWS-BEN, TMWS-ARC

van der Waal

Electrostatic

Polar solvation

System energy energy energy Binding energy
1MWS-2ME -69.954 +/-9.586 -58.492 +/-6.341 79.504 +/- 14.396 -58.678 +/- 14.532
kJ/mol kJd/mol kd/mol kd/mol
1MWS-BEN -60.426 +/-7.354 -199.199 +/-8.792 179.786 +/- 15.228 -93.762 +/- 12.717
kJ/mol kJd/mol kd/mol kd/mol
1TMWS-ARC -265.600 +/- -107.006 +/- 325.010 +/- 43.566 -77.507 +/- 13.443
16.280 kJ/mol 20.892 kJ/mol kd/mol kd/mol

Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) Binding Affinity Analysis

The MM-PBSA method was employed to determine the binding affinity of the complexes (1MWS-
2ME, 1MWS-BEN, 1MWS-ARC). The computed energy components provide interactions, including
van der Waals, electrostatic, polar solvation, and binding energies. Further detailed analysis is
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required to draw comprehensive conclusions about each energy component, relative binding
strengths, and contributions (Table 4). The diverse analyses support the stability and structural
integrity of the Sphingosine Kinase 1 complexes with 2ME, BEN, and ARC. These findings contribute
valuable insights for understanding the molecular behaviour of the complexes, laying the groundwork
for future drug design and discovery.

Discussion

Fern species belonging to the oldest vascular plants have been widely used as traditional medicines
by indigenous communities, especially in the humid regions of South East Asia (Salazar-Chacon et
al., 2024). The fern possesses medicinal features such as antioxidant, radical scavenging, and
cytotoxic activity against K562 leukaemic cells (Chai et al. 2015, Kaur, 2017). Pharmacological effects
of fern plants are related to the production of diverse phytochemicals, including alkaloids (Dong et al.
2012), flavonoids (Xia et al. 2014), polyphenols (Socolsky et al. 2012), terpenoids (Socolsky,
Asakawa & Bardon, 2007), and steroids (Ho et al. 2012). The ferns O. vulgatum and O.
pedunculosum have been shown to contain several flavonoids, glycerides, and amino acids (Wan et
al. 2012; Clericuzio et al. 2012; Hu, Meng & Wang, 2016) with antioxidant, anti-inflammatory,
antibacterial, and antimutagenic properties (Pietta 2000; Choi et al. 2001; Yoshizumi et al. 2001;
Schroeterh et al. 2001). Dryopteris spp. are rich in secondary metabolites, including glycosides,
steroids, alkaloids, phenols, terpenes, flavonoids, and tannins, which are responsible for biological
activities like antibacterial, antifungal, nematicidal, and antioxidant activities (Soare et al. 2012;
Egorova et al. 2021; Valarmathi et al., 2023). Diaportheueckerae was another endophytic fungus
isolated from the same fern in China (Gao et al., 2022) and shown to produce some known and
undescribed cytochalasans such as ueckerchalasins A—E, 4’ hydroxycytochalasin J3, cytochalasin H,
cytochalasin J, cytochalasin J1-J3, longichalasin B, RKS-1778, and phomopchalasin A which
displayed antibacterial activity against Staphylococcus aureus (SA) and methicillin resistant S. aureus,
selective activity against human carcinoma HelLa and HepG2 (Razaghi & Abdel-Azeem, 2024;
Binjawhar et al., 2024). Methicillin-resistant Staphylococcus aureus’s resistance involves mutated
penicillin-binding proteins, particularly PBP2a, which have a decreased affinity for B-lactam antibiotics,
therefore, it produces resistance not only to methicillin but also to all members of the extended-
spectrum B-lactam antibiotics (Kim et al., 2012; Idrees & Saeed, 2021; Mohammed et al., 2025),
which permits cell wall construction to continue even in the presence of antibiotics, and this is the
main mechanism underlying Methicillin-resistant Staphylococcus aureus uses the accessory gene
regulator regulatory system, efflux pumps, and biofilm development to improve virulence and biofilm
formation, contributing to its resistance (Ali et al., 2021; He et al., 2024). Traditional herbal medicine to
treat infectious diseases has gained global prominence as a leading alternative medicine (Mustafa et
al., 2022; Gandhiraj et al., 2021; Normile, 2003). In this study, the phytochemical extracts of
Nephrolepis exaltata possessed antibacterial activity against Methicillin-resistant Staphylococcus
aureus with 18 mm and 20 mm Zone of Inhibition (Zol) at 30 yg/mL and 40 yg/mL dose concentration.
Similarly, the essential oils from the Nephrolepis exaltata-2,4-Hexadien-1-ol (16.1%), nonanal
(14.4%), B-lonone (6.7%), and thymol (2.7%), and Nephrolepis cordifolia (B-lonone (8.0%), eugenol
(7.2%), and anethol (4.6%)) showed cytotoxicity in breast, colon, and lung carcinoma cells (El-
Tantaw, Shams & Afifi, 2015). The 2.00 A resolution structure of the nitrocefin acyl-PBP2A molecule
from the methicillin-resistant Staphylococcus aureus strain 27r revealed intricate molecular
interactions that laid the foundation for understanding antibiotic resistance (Fishovitz et al., 2014; Al-
Mijalli et al., 2025). During an in silico study, the compound 2, 3-Diazabicyclo [2.2.1] hept-2-ene
exhibited high stable binding affinity to Methicillin-resistant Staphylococcus aureus proteins, indicating
their potential as effective antibacterial agents. MD simulation revealed that the compounds
maintained stable interactions with the target proteins over 100 ns, with minimal deviations and
fluctuations, whereas derivatives of Oxadiazoles and Napthyridine compounds have potential dual
inhibition of PBP-2a and FemA proteins with the interactions of 250 ns (Bourhia et al., 2024). Various
medicinal plants, such as Rosmarinus officinalis, Ocimum basilicum, Eucalyptus globulus, and
Thymus vulgaris, were docked against -lactamase inhibitors by molecular docking analysis (Etminani
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et al., 2023). No research has been conducted on the docking, simulation, or antibacterial activity of
Neprolepis exaltata.

Limitations and Future Scope

Despite the promising antibacterial activity demonstrated by Nephrolepis exaltata against Methicillin-
resistant Staphylococcus aureus, the persistence of the limitations should be addressed, the
investigation may also proceed with various solvent extraction, which give more specificity of the
results, secondly, while in silico methods such as molecular docking and MD simulations provided
insights into the binding interactions and stability, these results require further validation through in
vitro and in vivo models which is essential to determine the therapeutic safety of the extract and its
components. Future studies can explore the isolation and purification of individual bioactive
compounds from Nephrolepis exaltata to enhance the understanding of specific antibacterial agents
responsible for the observed activity. Furthermore, a broader screening against various clinical
Methicillin-resistant Staphylococcus aureus isolates and other multidrug-resistant bacteria would
establish the spectrum of antibacterial potential. Expanding molecular docking and simulation to other
bacterial targets could offer a more comprehensive understanding of the mode of action. Lastly, these
bioactive compounds formulated into stable, deliverable pharmaceutical forms may pave the way for
novel antibacterial therapies.

Conclusion

The study confirms the potent antibacterial potential of Nephrolepis exaltata methanolic extract
against methicillin-resistant Staphylococcus aureus. The extract exhibited notable inhibition zones
and an MIC of 40 ug/mL, supporting its effectiveness. GC-MS analysis identified 22 phytochemicals,
with 2,3-Diazabicyclo [2.2.1] hept-2-ene showing the highest binding affinity in docking studies.
Molecular dynamics simulations and MM-PBSA energy profiling confirmed the interaction strength
and stability of the ligand and protein. These findings highlight the potential of Nephrolepis exaltata as
a source of novel antibacterial agents and encourage further exploration for drug development against
resistant pathogens.
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