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Abstract

The discovery of novel drugs was recognized as a convoluted, costly, time-consuming, and demanding
process. It was found that more than 10 years and approximately 4 billion INR are required for the
finding of a novel medicine through old-fashioned drug development procedures. In the pharmaceutical
industry, figuring out how to lower research costs and accelerate the development process of new drugs
has become a difficult and pressing question. Computer-aided drug design has become a potent and
capable technique for a quicker, less expensive, and more successful approach. Molecular docking is
a useful technique for estimating the structure of ligand-protein complexes. Over the past few years,
computational tools for drug discovery, including antitumor therapies, have displayed a significant and
exceptional power on the design of antitumor drugs. It has been found that chalcones serve as starting
materials for the synthesis of a large number of organic compounds, and this moiety has a variety of
pharmacological properties, including anticancer activity. The present study aims to identify a new
chemical entity of mesyl chalcone as anticancer agents and analyze their binding capacities, Van der
Waals potentials, and drug likeness through the molecular docking process. Physicochemical
properties were calculated using Molinspiration and Swiss ADMET. The docking study was done on the
crystal structure of receptor tyrosine protein kinase ErbB2. The study shown that all the compounds
exposed outstanding binding energies in the active sites of the protein and can be considered potent
inhibitors of the proto-oncogene ErbB-2 proliferation.

Keywords: ADME Properties; Anticancer; HERZ2, Ligands; Mesyl Chalcones; Protein; Molecular
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Introduction

Molecular docking, a computational modelling technique, predicts the binding alignment of ligands and
receptors, facilitating the understanding of intermolecular interactions. It uses scoring functions to
estimate binding free energy, stability, and molecular strength, offering insights into molecular structure
and the strength of attractive forces between proteins and ligands (Mishra et al., 2021; Umar et al.,
2024). Widely employed in predicting small molecule binding to biochemical targets, it aids in rational
drug design, enabling the development of more effective drugs. By optimizing molecular conformations
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and minimizing energy, it elucidates physical mechanisms governing molecular interactions. Access to
a structural database and reliable methodology ensures accurate evaluation of ligand-target
interactions, facilitating the prediction of ligand affinity with protein targets. Advanced computational
tools aid in identifying optimal ligands, streamlining drug discovery. Molecular docking revolutionizes
drug development by predicting molecular interactions, informing molecule optimization, and identifying
novel drug candidates, thus saving time and energy in the drug development process (Redhwan et al.,
2020). Drug discovery and development process were given in Fig. 1. Docking software has an effective
scoring function which allows it to accept or reject poses accordingly. This ensures quality control and
accuracy in the process. Even in the event of a rejection, new poses are created and the search iteration
continues until it reaches an endpoint with one accepted pose. Molecular docking combines searching
and scoring together to provide a comprehensive analysis. This process is highly efficient and provides
an accurate result. Ranking docked conformers based on their binding affinities and free energies can
be more challenging than the searching of the binding orientation (Mishra et al., 2021; Kodical et al.,
2020). There is a great variety of software programs for docking available, yet we have used
iIGEMDOCK, a structure based virtual screening system. This software is incredibly helpful in providing
interfaces to create both binding sites. To date, cancer is still a main worldwide community health
concern that needs to be addressed urgently. Researchers estimate that there are around 200 different
types of cancer, typically named after the tissue in which it was first discovered. Cancer is one of the
most serious reasons for mortality in the modern world, and a major obstacle to increases in life
expectancy across the globe. According to statistics, cancer is the second chief cause of death among
people who are 70 years old and below in 91 countries. For 22 other nations, it is either the third or
fourth leading cause of life loss (Cui et al., 2020). According to a study, worldwide cancer cases have
skyrocketed by 18.1 million and shockingly 9.6 million deaths attributed to cancer have been reported.
It's even more alarming that 70% of the cancer-related deaths occur in low- and middle-income
countries (Bray et al., 2018). Cancer is spreading rapidly and becoming one of the biggest health
concerns across the globe. This has posed an immense challenge in trying to contain its impacts on
people's lives. Finding effective and safe solutions to reduce the cancer-related death rate is a priority
for governments, societies, medical industries and scientific communities around the globe. This has
led to major advances in cancer treatments being developed at an accelerated rate.
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Figure 1: Drug Discovery and Development Process

Materials and Methods
Tools and materials used

In our study, we're exploring novel chalcones with methanesulfonyl end derivatives for potent anticancer
activity. We utilized databases like PDB, Drug Bank, and software such as ChemSketch, ChemDraw,
iGEMDOCK, Molinspiration, and Swiss ADMET. iGEMDOCK, a docking software, serves as a valuable
tool for understanding pharmacological interactions, aiding in the discovery of potentially active
molecules. The drug's ability to bind strongly to target molecules is crucial, with higher binding energy
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may indicating better suitability. Negative binding energy may correlates with drug potential, suggesting
higher likelihood of approval (Parameswari & Devika, 2019).

Chemistry of Mesyl Chalcones

Aromatic aldehydes with different para substitution 2(a-k) (0.01 mol) were stirred with 4-(methylsulfonyl)
acetophenone (1) (0.01 mol) in water (40 ml) and ethanol (25 ml) in presence of alkali (0.01 mol) for 5-
6 h. The reaction mixture was kept overnight in a refrigerator, then add excess ice cold water. The
precipitated product (MS1 to MS11) was filtered, washed with water and recrystallized from ethanol
(Lakshminarayanan et al., 2020; Ahsan et al., 2025). The synthetic route is given in Scheme 1.

Pharmacokinetics (ADME) properties like lipophilicity, water solubility, druglikeness, Physicochemical
and medicinal properties of the mesyl chalcones were determined by using Swiss ADMET server.
Binding interactions of the synthesized mesyl chalcones with protein were determined by docking (In-
silico approaches) by using iIGEMDOCKv2.1 software (Kumar et al., 2016). A personal computer HP
Compaq (Presario CQ61) running on Intel Pentium core 2 duo processor was used for the
computational work.
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Scheme 1: Synthetic Route for Mesyl Chalcones

Protein Selection

Humans possess approximately 30,000 genes, with 6,000 to 8,000 offering potential for
pharmacological targeting in drug development. However, only about 400 encoded proteins have been
validated for this purpose (Chen et al., 2016). Traditional drug discovery often overlooks drug-protein
interactions, focusing on a "one molecule - one target - one disease" approach, despite many diseases
involving multiple target proteins (Mishra et al., 2022). Notably, over expression of the epidermal growth
factor receptor 2 (HER2) is associated with certain aggressive breast cancers. Blocking HER2 binding
is crucial in such cases. Protein 7JXH, a structural chain of HER2, was selected as the receptor for
docking mesyl chalcones in this study.

Preparation and purification of the target protein

The 3D crystal structure of HER2 protein (7JXH) was retrieved from data bank of protein by giving the
protein ID (PDB code: 7JXH, http://www.rcsb.org) in the data base. Longest chain was selected; water
molecules and other undesired portions were removed from the structure of protein. Polar hydrogens
were added to the protein and the energy of the protein was minimised. The protein saved as a (.pdb)
format in desired place in the PC. Now the protein was ready to bind with ligands. Structure of the
protein, 7JXH and its 3D view were given in Fig. 2 and Fig. 3.
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Figure 2: Structure of 7JXH Figure 3: 3D view of 7JXH

Preparation of the ligand structures

Chemical formula of eleven mesyl chalcones (MS1 to MS11) and standard drugs, Anastrozole and
tamoxifen were drawn using ChemDraw Ultra 8.0 software. All the structures were transformed as
ligand structures and each molecule energy was minimized by using Chem3D Pro software, then it was
saved as (.pdb) format. Molecular structures of methanesulfonyl (mesyl) chalcones were drawn by
ChemSketch software, Ligand view of all the mesyl chalcones and standards are given in Table 1.

Table 1: Ligand View of Mesyl Chalcones and Standards

Code

Ligand
Code
As a STD 1 -
. Anastrozole
ligand and STD 2 —
STD .

Tamoxifen

Molecular docking study on receptor tyrosine protein kinase ErbB2

To find out the attractions between the mesyl chalcones (ligands) and the protein, docking was
performed by using the software, IGEMDOCKv2.1 (Leite et al., 2023; Askarzade et al., 2025). Upload
the protein and all the ligands in the suitable place in the software iGemdock.exe. Then perform
standard docking by click “start docking” with 70 generations in the population size of 200. Once the
docking was finished, view the docked poses, energy released, VDW and H Bond, then analyze and
interpret the results of each enzyme-ligand complex. All the results were compared with Anastrozole
and tamoxifen as positive standards for docking process.

Anastrozole and tamoxifen were selected as docking standards because of their well-established
clinical relevance in hormone-dependent breast cancer and their extensively characterized molecular
interactions, despite not being direct HER2 tyrosine kinase inhibitors. Breast cancer progression is
frequently driven by significant cross-talk between estrogen receptor (ER) signalling and the HER2
pathway, where activation of one pathway can influence or compensate for the other. Literature reports
indicate that ER-modulating agents such as tamoxifen and estrogen-synthesis inhibitors like
anastrozole can indirectly affect HER2-mediated signalling cascades by altering downstream
proliferative and survival pathways. Therefore, using these compounds as docking standards provides
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a biologically meaningful reference to compare ligand—protein interactions in the context of breast
cancer—related targets. Their inclusion helps to benchmark binding behaviour against clinically
validated agents involved in interconnected signalling networks, even though their primary mechanism
of action is not direct inhibition of HER2 tyrosine kinase activity.

Results

Physicochemical properties like molecular formula, molecular weight, number of aromatic atoms
present, molecular orbital character (Fraction sp®) and properties of polar atoms were calculated by the
Swiss ADMET server and given in Table 2 Characters of synthesized compounds like Lipophilicity,
Pharmacokinetics properties, Druglikeness and Medicinal Chemistry characters were also calculated
by Swiss ADMET server and given Table 3 to 6 respectively.

Table 2: Physicochemical Properties of the Mesyl Chalcones and Standards

Physicochemical Properties

Sl. a3 g s2 | & - > = _ T
No. | Code fsl-“ SE| S ;g a @ P @ & @

23 | < |2 | @ < T T =
1 | Mst | cteH1403s |28635| 20 | 12 | 006 | 4 3 0 | 7934 5%59
2 | mMs2 | c17H1604s | 31637 | 22 | 12 | 012 | 5 4 0o | 8583 6%(?2
3 | MS3 | C17H1603S | 300.37 | 21 12 | 012 | 4 3 0 | 8431 5%59
4 | Ms4 | c1sH1803s |31439| 22 | 12 | 017 | 5 3 0 | 89.12 5%29
5 | MS5 | C18H19NO3S | 32941 | 23 | 12 | 017 | 5 3 0 | 9355 6%53
6 | MS6 | C16H13NO5S | 33134 | 23 | 12 | 006 | 5 5 0o | 88.16 10A5(')41
7 | Ms7 | c16H13CI03S | 32079 | 21 | 12 | 006 | 4 3 0 | 8435 5%’9
8 | MS8 | C16H13FO3s | 30434 | 21 | 12 | 006 | 4 4 0 | 79.30 5%39
9 | MS9 | C16H13BrO3S | 36524 | 21 | 12 | 006 | 4 3 0o | 87.04 5%39
10 | MS10 | C17H13F303S | 354.34 | 24 | 12 | 012 | 5 6 0 | 8434 5?_\'39
1 | MS11 | cteH1404s | 30234 | 21 | 12 | 006 | 4 4 1 | 8137 7%52
12 | sTD1| Cci7H19Ns | 20337 | 22 | 11 | 041 | 4 4 0 | 83.81 78A'§9
13 | sTD2 | C26H29NO | 37151 | 28 | 18 | 023 | 8 2 0 | 119.71 1%‘7

Table 3: Lipophilicity of The Mesyl Chalcones and Standards
Lipophilicity Character logPo/w
SI. No. Code iLoGP | xLoGgP3 | wLoGP MLOGP SILICOS- Consensus
IT (Average)

1 MST | 243 232 3.96 2.81 3.26 2.00
2 MS2 | 248 2.90 3.97 2.47 3.32 3.03
3 MS3 | 2.56 3.29 4.27 3.05 3.77 3.39
4 MS4 | 2.70 373 452 3.29 416 3.68
5 MS5 | 2.46 3.05 4.02 2.71 2.04 3.04
6 MS6 | 1.83 2.76 4.39 173 1.51 2.44
7 MS7 | 243 3.56 4.61 3.32 3.00 3.56
8 MS8 | 2.33 3.03 452 3.20 3.68 3.35
9 MS9O | 2.60 3.62 472 3.44 3.04 3.66
10 MS10 | 2.49 4.81 413 468 435 4.09
11 MS11 | 1.88 257 3.66 2.28 2.78 2.63
12 STD1 | 2.25 2.03 2.93 1.71 2.85 2.35
13 STD2 | 464 414 4.90 41 4.99 455
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Table 4: Pharmacokinetics Properties of the Mesyl Chalcones and Standards

Pharmacokinetics Properties
Cytochrome P450 inhibitor
SI.No | Code Gl BBB < Q Q Q <
absorption permeant fn |02 o o |2 Log Kp
> | > > >
(§) (§) (§) (§) (§)
1 MS1 High + - * - - - -6.40 cm/s
2 MS2 High + + + + - + -6.17 cm/s
3 MS3 High + + + - - - -5.80 cm/s
4 MS4 High + + + + - + -5.57 cm/s
5 MS5 High + + + + - + -6.14 cm/s
6 MS6 High - - + + - - -6.36 cm/s
7 MS7 High + + + + - + -5.73 cm/s
8 MS8 High + + + - - + -6.01 cm/s
9 MS9 High + + + + - + -5.96 cm/s
10 MS10 High - + + - - + -5.76 cm/s
11 MS11 High - - - - - + -6.32 cm/s
12 STD1 High + - - + - - -6.65 cm/s
13 STD2 Low - - + - + - -3.50 cm/s
Table 5: Druglikeness of The Mesyl Chalcones and Standards
Sl. Code Druglikeness Character
No. Lipinski Ghose | Veber Egan Muegge | Bioavailability Score
1 MS1 + + + + + 0.55
2 MS2 + + + + + 0.55
3 MS3 + + + + + 0.55
4 MS4 + + + + + 0.55
5 MS5 + + + + + 0.55
6 MS6 + + + + + 0.55
7 MS7 + + + + + 0.55
8 MS8 + + + + + 0.55
9 MS9 + + + + + 0.55
10 MS10 + - + - + 0.55
11 MS11 + + + + + 0.55
12 STD1 + + + + + 0.55
13 STD2 + - + - - 0.55

Table 6: Medicinal Chemistry Character of The Mesyl Chalcones and Standards

Medicinal Chemistry Character
Sl.No Code Pains Brenk Leadlikeness Synthetic
(Alert) Accessibility
1 MS1 0 1 + 2.66
2 MS2 0 1 + 2.64
3 MS3 0 1 + 2.73
4 MS4 0 1 - 2.87
5 MS5 1 1 + 2.77
6 MS6 0 2 + 2.68
7 MS7 0 1 - 2.66
8 MS8 0 1 + 2.65
9 MS9 0 1 - 2.70
10 MS10 0 1 - 2.80
11 MS11 0 1 + 2.53
12 STD1 0 0 + 2.21
13 STD2 0 1 - 3.01

Molecular Docking

The software tool used is an effective instrument that can provide the better beginning place for
perceptive pharmacological interactions, which facilitates outcomes in perceiving additional innovative
and possibly active molecules for a particular protein, which is accountable for ilinesses. Fitting of drug
to the goal molecules have the highest requisite energy of receptor — ligand connections. The drug's
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capacity to fit to the target molecules is supported by the binding energy with the maximum value. The
more binding energy that is negative, the more probable it is that a chemical may be approved as a
drug (Halfar et al., 2025; Varghese et al., 2025). Mesyl chalcones and the target protein were docked
by iIGEMDOCK and hereditary algorithm restrictions were located as two hundred population size,
seventy generations in two number of solution. This docking method recognises numerous bond
dynamisms, like hydrogen bond, Van Der Walls and electrostatic interface which occur between
compounds and the protein. Results were given in Table 7 & Fig 4 and best docking pose were given
in Table 8.

Table 7: Docking Results of Mesyl Chalcones and Standards

Code Energy (kcal/mole) VDW H-Bond
MS1 -84.21 -74.84 -9.37
MS2 -88.01 -84.55 -3.46
MS3 -86.20 -82.83 -3.37
MS4 -77.77 -68.30 -9.48
MS5 -86.80 -84.30 -2.50
MS6 -86.53 -74.81 -10.82
MS7 -79.24 -76.74 -2.49
MS8 -87.23 -83.73 -3.50
MS9 -78.37 -75.94 2.43
MS10 -90.40 -88.06 -2.34
MS11 -86.82 -75.82 -11.00
STD1 -73.59 -67.33 -06.26
STD2 -91.97 -91.92 -00.00

Table 8: Best Docking Pose of Mesyl Chalcones and Standards

Anastrozole Tamoxifen

Docking Binding Energies of Mesyl Chalcones and Standards

=20

—40

=0 4

Binding Energy [koalimal)

=80

PP PP PP WP P PP PP

Compound Cade

Figure 4: Docking Results of Mesyl Chalcones and Standards
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Discussion
Physicochemical properties of the mesyl chalcones and standards
Fraction Csp3

Determining the fraction Csp3 is vital for analysing carbon saturation in molecules. Enhancing sp3
character can improve various molecular properties crucial for clinical efficacy. Modifying molecular
shape facilitates constructing in-plane and out-of-plane substituents, enhancing receptor-ligand
complementarily. This enables additional protein-ligand interactions, enhancing specificity to a target
while reducing off-target effects (Thomas et al., 2006). Comparison of commercially available
medications with drug-like compounds highlights changes. Descriptor analysis using aryl, double, and
single bonds helps calculate complexity and saturation (Badertscher et al., 2001). About 40% of
pharmaceuticals lack sp3 carbons in their ring structures. The FCsp3 value for each scaffold, including
-CH2 linkers and chiral carbons (Taylor et al., 2014), is determined to assess saturation. Utilizing a
saturation index, all compounds exhibit FCsp3 values below 0.25, indicating good molecular planarity.

Topological molecular Polar Surface Area (TPSA)

The transport properties of a drug are characterised by the topological molecular polar surface area, or
TPSA. The assets are determined by polar atoms, and it is predicted using various techniques, including
tabulated surface contributions from polar fragments and traditional 3D PSA. The TPSA is predicted by
Swiss ADMET server using the total of polar fragments surface contributions (Balakrishnan et al., 2014).
Drug molecules TPSA should ideally be < 160 Ao. In the present study, TPSA value of all the
compounds and standards were found to be within the range (12.47 — 105.41 Ao).

ADME properties of the mesyl chalcones - Pharmacokinetic studies

The process of finding new drugs is expensive and time-consuming. It is now simpler to forecast the
factors that determine a compound's therapeutic potential thanks to computational approaches. The
hydrophobicity of drug molecules is indicated by the cLogP, i,e partition coefficient between n-octanol
and water, which affects a medication's absorption, bioavailability, metabolism, and toxicity concerns
(Mukadam & Jagdale, 2024). Low permeation or poor absorption is caused by high logP values. The
value of cLogP cannot be higher than 5.0. The LogP values of all the mesyl chalcones and standards
were found less than five. Because a drug's molecular weight and absorption are correlated, an increase
in molecular weight results in a decrease in absorption. In the process of developing new drugs,
maintaining lower molecular weight is crucial. It was noted that all the compounds and standards have
< 450 molecular weight and cLogP value less than 5. Drug likeliness of the compounds was
premeditated based on Lipinshi’s rule, Veber’s, Ghose’s PAINs and other lead likeliness limits and the
results were likened with standard drug Anastrozole and tamoxifen.

Lipinski’s rule of five

Pharmaceutical researchers frequently apply Lipinski's Rule of Five to predict the oral bioavailability of
potential lead compounds during drug design and development. According to this rule, a drug molecule
is likely to be orally active if it meets the following criteria: (i) a molecular weight below 500, (ii) a
calculated Log P value of less than 5, (iii) fewer than 5 hydrogen bond donors (OH and NH groups), (iv)
fewer than 10 hydrogen bond acceptors (primarily N and O), and (v) no more than one violation. The
analysed chalcones exhibited molecular weights under 500, Log P values below 5, fewer than 5
hydrogen bond donors, and fewer than 10 hydrogen bond acceptors. Notably, all mesyl chalcones
complied with Lipinski’s Rule of Five without any violations (Lipinski ef al., 2012).

Veber Rules

Veber Rules states that a potential drug may have good oral bioavailability if it contains 10 or less than
10 rotatable bonds and below 140 Ao Polar surface areas (Veber et al., 2002). Rotatable bond in the
molecule represents molecular flexibility and Polar surface area was inversely propositional to

150



Lakshminarayanan et al.
Int J Adv Life Sci Res. Volume 9(1) 143-156

permeation rate than lipophilicity (ClogP). Rotatable bonds present in the proposed compounds were
found to be between 4 to 8. Hence all the compounds obeyed the Veber rule.

Ghose Filter

This approach was used to reveal the information about quantitative and qualitative characters of a drug
molecule. These character of a drug based on Physicochemical properties of a drug like molecular
weight, number of atoms, logP and molar refractivity (Ghose & Crippen, 1987). As per Ghose filter, a
drug molecule may fulfil the following criteria: cLogP should be between -0.4 — 5.6, Molecular weight
between 160 — 480, Molar refractivity between 40 — 130, Total no. of heavy atoms between 20 to 70.
Report of all the compounds revealed that cLogP value was found between 2.35 — 4.55, molecular
weight between 286 — 371, molar refractivity value between 79.3 — 119.71 and total no. of heavy atoms
between 20 — 28. Hence all the compounds fulfil the above Ghose filter criteria.

Egan Filter

The Druglikeness Egan (Pharmacia) filter can give an indication of the absorption rate of a small
molecule based on the physical factors that influence it passing through cell membranes. Egan's
computational model for predicting the absorption of drugs into the human body takes into account
active transport and efflux mechanisms, making it a robust and reliable system. This means that it is
extremely useful for accurately estimating passive intestinal absorption of small molecules. After being
assessed, all of the compounds passed the Egan filter primarily due to their polar surface area and the
numeral of H donors that controlled their hydrophilicity and hydrophobicity (Egan et al., 2000).

Muegge Filter

The Muegge Rule (Muegge et al., 2001) is a powerful tool for chemists and pharmaceutical researchers
to quickly identify drug-like molecules from non-drug-like compounds. Using a pharmacophore point
filter, the Muegge Rule determines if a compound has the structural characteristics of a drug by
examining several simple structural guidelines. This rule can save time and energy for researchers, as
it can quickly sieve out compounds that are structurally improbable to be drugs. Non-drugs have long
been underutilized and underestimated in the field of pharmacology. To counter this, a filtering system
has been developed to ensure that only molecules with a least amount count of distinct pharmacophore
points are allowed to pass through. This system helps to ensure that the drugs used are effective and
safe for use, allowing for more efficient and targeted treatments.

Bioavailability Score

Bioavailability is a term used to describe how much and how quickly a drug is absorbed into the body.
This can be dependent on the design and manufacturing process of the dosage form, which affects its
efficacy. Furthermore, this determines how accessible the active moiety is to reach systemic circulation
and ultimately affect its site of action. The Bioavailability Score (BAS) is calculating of the comparative
potency of a drug. This rule provides an easy way to determine the therapeutic potential of any drug
and how it will interact with other substances in the body. The BAS rule states that drugs with a score
greater than 0.0 are physiologically active, drugs with scores in between -5.0 and 0.0 are reasonably
active, drugs with scores below -5.0 are inactive. This simple system allows pharmacologists to quickly
assess the care and effectiveness of new medications and make informed decisions about their use in
medical treatments (Martin, 2005). BAS of all the compounds was found to be 0.55 indicates that all
are physiologically active.

PAINs and Brenk

The PAINs (Pan Assay Interference Compounds) and Brenk filters were designed to help identify
molecules that are expected to have a response in biological assays. They also target compounds with
acceptable toxic levels, as well as chemical reactivity and metabolism stability. PAINs are chemical
entities that can trick high-throughput screening tests and give misleading results. They have the
impending to interrelate with several living targets moderately, eventually zeroing-in on one preferred
target and causing disruption. There are many groups of compounds that cause disruption in enzyme
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assays, phenotypic screens, and produce unwanted biological activity due to their presence. These
PAINs which need to be taken into consideration when conducting research with these types of assays
(Dahlin & Walters, 2014). High Throughput Screening (HTS) is a critical portion of the preparation
finding method. However, it can lead to false positives when trying to determine hits. To ensure an
accurate result, it is important to be conscious of these impending false positives during the HTS
operations (Baell & Walters, 2010). Compounds may be mistakenly identified as false positives for a
range of causes such as forming aggregates that interact with proteins, being reactive to proteins, or
having a direct effect on assay signalling (Baell & Holloway, 2014).

Lead likeness

Lead likeness analysis is a great way to identify potential sources of drug discovery leads. It allows you
to quickly and accurately evaluate complex datasets in order to identify the best lead candidates.
Teague et al (1999) in their research to discover potential leads for drug development, suggested that
lead compounds should have an affinity greater than 0.1uM (Teague et al., 1999). The ED50 is typically
used as a measure of the affinity of a ligand in situations where the molecule is an agonist. In order to
determine this value, the lead must fulfil certain criteria such as having a molecular weight lower than
350 and clLogP value less than 3. All the compounds have significant Leadlikeness character except
MS4, MS7, MS9, MS10 and STD2, since they have more than 3 cLogP values.

Synthetic Accessibility

The synthetic accessibility (SA) of compounds plays a crucial role in drug design, as certain compounds
cannot be synthesized solely through computer-aided drug design (CADD) (Schneider & Fechner,
2005). If the target compounds are challenging to synthesize, additional time and resources will be
required for their production. Lead candidates are typically assessed based on factors such as drug-
likeness, natural product potential, and predicted activity. However, the in silico design of a lead
compound does not guarantee its feasibility for synthesis, making SA an essential parameter in
predicting a compound’s synthetic viability.

Estimating the overall accessibility of a large number of compounds is a complex task. To address this,
certain computational methods have been developed to perform these predictions more efficiently. One
such method estimates the synthetic accessibility of drug-like molecules. The SA score, which ranges
from 1 to 10, indicates the ease or difficulty of synthesizing a drug molecule, with lower scores
representing easier synthesis and higher scores indicating greater difficulty. The synthetic accessibility
score is determined based on a combination of fragmentation contributions and complexity penalties.
These fragment contributions are derived from the analysis of one million representative molecules from
the PubChem database, effectively capturing the cumulative synthetic knowledge stored in this
extensive dataset. From the result analysis of synthetic accessibility, all the mesyl chalcones were found
to be good synthetically accessibility (2.53 — 2.87). The order of synthetic accessibility from easy to
difficult as follows:

STD1 > MS11 > MS2 > MS8 > MS7 = MS1 > MS6 > MS9 > MS3 > MS5 > MS10 > MS4 > STD2
Molecular Docking

The docking results presented in Table 7 demonstrate clear variation in the predicted binding affinities
of the mesyl chalcone derivatives (MS1-MS11) compared with the standard compounds (STD1 and
STD2). Generally, a more negative total binding energy indicates a stronger and more stable interaction
between the ligand and the target protein, reflecting higher predicted affinity in silico. This trend is widely
recognized in contemporary docking studies, where negative docking scores are interpreted as
favourable binding and increased stability of the ligand—protein complex due to stronger intermolecular
forces (e.g., hydrogen bonding and van der Waals interactions) contributing to complex stabilization in
the binding site. Negative values therefore suggest a potentially higher likelihood of biological activity,
whereas less negative or positive values are interpreted as comparatively weaker binding affinity. For
example, MS10 exhibits one of the most negative total energy values (-90.40 kcal/mol), outperforming
STD1 (-73.59 kcal/mol) and nearing the highly negative score of STD2 (-91.97 kcal/mol). This suggests
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that MS10 could form stronger non-covalent interactions and may be a promising candidate for further
exploration. Similarly, other mesyl chalcones such as MS2 (-88.01 kcal/mol), MS8 (-87.23 kcal/mol),
and MS5 (-86.80 kcal/mol) also show more negative binding energies than STD1, indicating
comparatively stronger predicted binding interactions.

The van der Waals (VDW) contributions in many of these ligands (e.g., MS2: —84.55 kcal/mol; MS8:
—-83.73 kcal/mol) reinforce the importance of hydrophobic contacts and steric complementarity in
stabilizing the ligand within the binding pocket. Hydrogen bonding contributions, reflected in the H-bond
energy terms, also significantly influence binding affinity, as observed with MS6 (-10.82 kcal/mol) and
MS11 (-11.00 kcal/mol), where stronger H-bond energies correlate with increased total affinity.
Conversely, MS9 shows a positive H-bond energy term (+2.43 kcal/mol), which may reflect a lack of
favorable hydrogen bonds or potential steric clashes, resulting in a comparatively weaker total binding
energy (—78.37 kcal/mol). These interpretations align with 2025 docking analyses that emphasize the
relationship between lower (more negative) docking scores and enhanced complex stability through
non-covalent interactions, including hydrogen bonds and VDW contacts, as key determinants in ranking
compounds for further investigation. In molecular docking studies, more negative binding energies are
widely accepted as indicative of stronger and more favorable ligand—receptor interactions, enabling the
ranking of compounds by predicted affinity (Nivatya et al., 2025; McNutt et al., 2025). Further, practical
docking studies on biologically relevant targets show that compounds with more negative docking
energies tend to be prioritized for subsequent analysis and design (Boora et al., 2025). The Fig 4 clearly
shows that most mesyl chalcones exhibit more negative binding energies than STD1, indicating
stronger predicted binding. MS10 and STD2 stand out with the most negative energies, supporting their
higher docking affinity. Compounds such as MS2, MS5, MS8 and MS11 also cluster close to the top
performers, visually reinforcing the discussion points.

Limitation of the Study

Despite the promising outcomes of this study, certain limitations exist. The molecular docking approach
provides theoretical insights into ligand-protein interactions but does not fully account for dynamic
physiological conditions, such as metabolic stability and in vivo bioavailability. Experimental validation
through in vitro and in vivo studies is essential to confirm the anticancer potential of mesyl chalcones.
Additionally, the specificity and off-target effects of these compounds need to be thoroughly investigated
to ensure their safety and efficacy.

Future Scope of the Study

Future research should focus on advanced computational techniques, such as molecular dynamics
simulations and Al-driven drug design, to enhance predictive accuracy. Furthermore, extensive
biological assays and clinical evaluations will be crucial in translating these findings into viable
therapeutic agents for cancer treatment.

Conclusion

Cancer is a major health concern, affecting millions of people around the world. Approximately 9.6
million deaths are attributed to cancer annually, as reported in numerous studies. Cancer is now the
2nd biggest source of death in humans. Coming up with an innovative drug molecule for cancer
treatment, take 12 years, costs, on average more than 200 billion Indian rupees. What makes the cancer
treatment more strenuous is that molecular pharmacology isn't completely understood yet. Developing
effective drugs is an unrestrained and time-consuming procedure, so computational approaches can
help to lessen the costs and speediness up the process. Such methods are useful for tasks like drug-
target prediction, binding site identification, protein interaction network analysis and virtual screening.
There are several computational techniques that can dramatically reduce the time spent on discovering
new anti-cancer treatments. Computational models could work together to generate reliable predictions
and accelerate the process of forming new drugs to combat cancer. Fewer mesyl chalcones were taken
into account to analyse their anticancer activities by computational methods. Compound with
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trifluoromethyl group (MS10), methoxy group (MS2) fluoro group (MS8) were exactly bind with protein
and release high energy they can be considered as potential inhibitor against ErB2 oncogene.
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