Variation in flowering and fruit set among indigenous mango varieties from Malda and Murshidabad conserved as Field Gene Bank in Gurudas College, Kolkata, India

Mitu De¹, Subhasree Dutta², Gautam Kumar Pahari³, Sayak Ganguli⁴, Susanta Ray⁵, and Santi Ranjan Dey⁶*

¹Associate Professor, Department of Botany, Gurudas College, Kolkata 700054, India.
²Research Scholar, Department of Zoology, Rammohan College, Kolkata 700009, India.
³Assistant Professor, Department of Botany, Gurudas College, Kolkata 700054, India.
⁴Group Leader, Amplicon Institute of Interdisciplinary Science and Technology, 2 G.P. Road, Badamtala, Palta, 743122, India
⁵Headmaster, Goalpara Tarun Sangha Junior High School, Khagra, Murshidabad, India.
⁶Assistant Professor, Department of Zoology, Rammohan College, Kolkata, India.

*Correspondence E-mail: srdey1@rediffmail.com

Abstract

The flowering phenomenon in mango is a complex one. Normally, it crops heavily in one year (on year) and bears less or no crop the following year (off year). Again, it yields heavily the next year. These alternate bearer fruit cultivars present a serious economic problem to fruit growers in West Bengal. The rhythm of bearing in mango is not strictly ‘alternate’ but ‘irregular’ or ‘erratic’. These alternate bearer fruit cultivars present a serious economic problem to fruit growers in West Bengal. Alternate bearing is the processes in fruit trees by which cycles of heavy yield (ON crop) one year are followed by a light yield (OFF crop) the next. The ON’ years characterized by significant production are followed by ‘OFF’ years, characterized by low production. The low production in ‘OFF’ years usually results from a lack of flower

Introduction

Mango (Mangifera indica L.) flowering is greatly influenced by the weather conditions and varietal genotypes. Flowering is an important trait as it directly affects the yield. However the flowering phenomenon in mango is a complex one. Normally, it crops heavily in one year (on year) and bears less or no crop the following year (off year). Again, it yields heavily the next year. The rhythm of bearing in mango is not strictly ‘alternate’ but ‘irregular’ or
formation rather than a poor fruit-set (Monselise and Goldschmidt, 1982). Research findings have clearly indicated that this phenomenon is mostly due to varietal as well as environmental factors in addition to the orchard management practices including pruning, nutrition, irrigation and plant protection.

The major problem associated with alternate bearing habit in mango is the loss of the fruits and yield, which affects the overall crop production. Various research workers throughout the world have studied the phenomenon of alternate bearing in different fruit crops like citrus fruits, mandarin and olives and associated several horticultural traits with this complex phenomenon (Mun˜oz-Fambuena et al., 2011; Shalom et al., 2012; Turktas et al., 2013).

Understanding flowering in Mango: Recent trends

A fundamental understanding of flowering is essential to efficiently utilize cropping management systems, which would extend both the flowering and crop production seasons (Chacko, 1991; Ramirez and Davenport, 2010). In spite of profuse flowering during ‘on’ years, pollination failure and premature fruit drop results in poor fruit set and low fruit retention respectively in mango (Litz, 1997). Therefore, investigation on floral biology of mango is a pre-requisite for any future line of work in mango crop for increasing productivity. (Geetha et al., 2016).

In recent times genome resources developed by the way of segmental and whole transcriptome data may be utilized for better understanding of genetics of regular bearing habit in fruit crops. The information generated will be utilized for identification of potential parents, desired hybrids in early nursery stage, thus would assist breeders by bringing precision breeding and also make available fruits during off years (Sharma et al., 2015). Development of RNA sequencing (RNA-seq) methodology has facilitated the analysis of transcriptomes of a number of crop and medicinal plants (Duangjit et al., 2013; Xu et al., 2013). Transcriptome analysis resulted in numerous differentially expressed genes (DEGs), allowing the partial identification of mechanisms that convert ‘on’ into ‘off’ buds. Flowering involves the sequential action of two groups of genes, i.e. those that switch the fate of the meristem from vegetative to floral (floral meristem identity genes), and those that direct the formation of the various flower parts (organ identity genes). A thorough understanding of the floral transition with complex genetic network, regulated by multiple environmental and endogenous clues is a primary requirement. Development of genomic and transcriptomic tools has contributed to a better understanding of the metabolic and molecular processes involved in floral biology. Even the regular-bearing types, if they carry a heavy load of crop in 1 year, show a tendency towards reduced yield in the following year. Hence the basic tendency of bienniality exists even in the so-called regular-bearing varieties of mango. Understanding the cellular and molecular mechanisms involved in regular and irregular bearing fruit varieties will assist in the development of flowering, identification of regulatory regions and factors implicated for regularity in bearing in mango. Transcriptomic data could be utilized for the synthesis of SSR and SNPs markers.

Sequencing of expressed genes (transcriptomes) using Next Generation Sequencing (NGS) technologies has been used for gene discovery and allele mining (Barabaschi et al., 2012; Egan et al., 2012). Recently, the transcriptome of mango cvs. Langra and Zill have been reported (Azim et al., 2014; Xia et al., 2014). However there is no report of the transcriptome profile of indigenous mango cultivars of West Bengal.

Pre requisite for understanding of the enigma of Mango flowering

Fruit set in Mango is a varietal character, depending upon several factors such as time of flowering, sex ratio, efficient cross-pollination and intensity of flower drop. Varieties differ from one another in these respects and this leads to varying fruit set in different varieties. Understanding the cellular and molecular mechanisms involved in regular and irregular/alternate bearing mango varieties will assist in the development of flowering, identification of regulatory regions and factors implicated for regularity in bearing in mango.
Detailed and well documented information about the available genetic material together with a broad, well maintained varietal diversity are essential for breeding efforts. Apart from good soil management, the only other means of reducing losses from alternate bearing in mango seems to be by breeding varieties that tend to bear annually. This should also include local varieties (Subedi et al., 2005), which may have a low market, but high breeding value. So the identification of regular and alternate bearing varieties among the indigenous mango varieties is required so that they may be used as parents in any future mango hybrid development programs. Varieties both alternate and regular bearing need to be identified before the transcription profiling.

Materials and Methods

25 (Twenty five) mango varieties were collected from Malda and Murshidabad districts with the help of co authors in Murshidabad. In the year 2016 the cuttings were transferred to Gurudas College, Kolkata 700054 for conservation as Field Gene Bank (De et al, 2019). The varieties included mostly traditional mango varieties and few cultivated extensively commercially. The list of varieties conserved as Field gene banks are given in Table I.

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name of the Mango variety</th>
<th>Flowering in Feb 2019</th>
<th>Fruiting in April 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bimli</td>
<td>Low flowering</td>
<td>Scanty fruit set, only one fruit</td>
</tr>
<tr>
<td>2</td>
<td>Churmur</td>
<td>Low flowering</td>
<td>Scanty fruit set</td>
</tr>
<tr>
<td>3</td>
<td>Molam Jam</td>
<td>Low flowering</td>
<td>Scanty fruit set, only two fruits</td>
</tr>
<tr>
<td>4</td>
<td>Sahi</td>
<td>Low flowering</td>
<td>Scanty fruit</td>
</tr>
<tr>
<td>5</td>
<td>Surma-Fazli</td>
<td>Low flowering</td>
<td>Scanty fruit set</td>
</tr>
<tr>
<td>6</td>
<td>Bombai</td>
<td>Moderate flowering</td>
<td>Low fruit set</td>
</tr>
<tr>
<td>7</td>
<td>Himsagar</td>
<td>Moderate flowering</td>
<td>Low fruit set</td>
</tr>
<tr>
<td>8</td>
<td>Sarenga</td>
<td>Moderate flowering</td>
<td>Low fruit set</td>
</tr>
<tr>
<td>9</td>
<td>Motichur</td>
<td>Low flowering</td>
<td>Scanty fruit set</td>
</tr>
<tr>
<td>10</td>
<td>Rani Pasand</td>
<td>Profuse flowering</td>
<td>Good fruit set</td>
</tr>
</tbody>
</table>

Results

In 2019, of the 25 varieties in Gurudas Mango field gene bank only 10 varieties flowered as shown in Table II. The flowering was scanty in 3 varieties viz. Bimli, Molamjam, Motichur which are traditional varieties of Murshidabad. It was seen that the traditional varieties Sarenga, Surma-Fazli, Churmur and Sahi had low flowering and fruit set. The checks Himsagar and Bombai showed moderate flowering. Only Rani Pasand had profuse flowering and later fruit set.

In 2018 flowering did not occur in these varieties except Golap Khas and Chousa as shown in Table III. This could probably be due to acclimatization process.

Table II. Variation in flowering and fruit set among the Mango varieties during 2019.

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Name of the variety</th>
<th>Flowering in Feb 2018</th>
<th>Fruiting in April 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Golap Khas</td>
<td>Low flowering</td>
<td>No fruit set</td>
</tr>
<tr>
<td>2</td>
<td>Chousa</td>
<td>Scanty flowering</td>
<td>No fruit set</td>
</tr>
</tbody>
</table>

Table III. Variation in flowering and fruit set among the Mango varieties during 2018.
Mango variety, Rani Pasand showing profuse flowering in 2019.
Mango variety, Rani Pasand showing good fruit set in 2019.
Mango variety, Sarenga with moderate flowering in 2019.
Mango variety, Sarenga with low fruit set in 2019.
Mango variety, Surma Fazli with low flowering in 2019.
Mango variety, Surma Fazli with very scanty fruit set in 2019.
Mango variety, Golap Khas in flowering condition in 2018 but with no fruit set.
Mango variety, Chousa with scanty flowering in 2018 with no fruit set

Discussion

Transcriptome profiling is needed to study the regular and alternate bearing behavior of mango the indigenous mango germplasm. Transcriptomic data could be utilized for the synthesis of SSR and SNPs markers.

Sequencing of expressed genes (transcriptomes) using Next Generation Sequencing (NGS) technologies could be used for gene discovery and allele mining. The transcriptome information generated can be utilized for identification of potential parents, desired hybrids in early nursery stage and
would assist breeders by achieving precision breeding and also make available mango fruit during the 'off' years. Genetic diversity data both morphological and molecular are needed to understand the enigma of mango flowering. However it is imperative that conservation of the indigenous mango varieties is also implemented. If any mango variety is lost, its unique genetic constitution is lost forever for posterity.

In spite of many valuable morphological traits, genetic diversity conserved in local mango cultivars and in its exotic germplasm has not been assessed fully in Murshidabad and Malda districts either by using morphological characters or DNA-based genetic markers. A preliminary survey by the Principal investigator (PI) has resulted in documenting some rare varieties from Malda and Murshidabad (De et al, 2014). This recent documentation of the mango diversity from these areas show that the traditional mango varieties which are in general are low yielding are being replaced by new high yielding hybrids. Unless the mango germplasm is conserved it will be futile to study about the genetic diversity of extinct mango varieties. These mango varieties must be conserved preferably by in situ conservation strategy or by on –farm conservation method. If these methods cannot be implemented then ex situ conservation methods may be used. PI has initiated the conservation of some traditional mango varieties of Malda and Murshidabad as Field Gene Bank (FGB) in Kolkata (De et al, 2019) with the financial assistance of the West Bengal Biodiversity Board (WBBB). After efforts have been on the conservation area then genetic diversity study will be meaningful.

Conclusion
Murshidabad and Malda Districts of West Bengal is very rich in Mango legacy since the time of Nawabs. These two districts alone harbour near about 200 traditional Mango varieties. The mango plants of the traditional varieties are age old and low yielding and are replaced by new high yielding varieties. Conservation and documentation of Mango (Mangifera indica L.) germplasm is of utmost importance. The mango germplasm diversity data generated will be valuable to communities, scientists and policy managers to formulate and implement conservation strategies of in situ, on-farm as well as ex situ conservation and management of these genetic resources.

Conflicts of Interest
The authors declare that there are no conflicts of interest regarding the publication of this work.

Acknowledgment: This work has been carried out with the financial assistance of a Research Project of the West Bengal Biodiversity Board (WBBB) to the first author as principal investigator. The authors thank the Principal, Gurudas College, Kolkata 700054 for providing the laboratory and garden infrastructure for creation of the mango field gene bank in the college campus. The authors would also take this opportunity to thank the mango orchard owners of Malda and Murshidabad who shared their germplasm to establish this Field Gene Bank (FGB) in Kolkata.

References
De et al.

