Antioxidant Effects of Gude Bean (Cajanus cajan) to Homa-IR and IRS-1 of High Fat and High Fructose Diet Rats

  • Fransisca Shinta Maharini Nutrition Bachelor Department, Sekolah Tinggi Ilmu Kesehatan Panti Rapih Yogyakarta, Indonesia https://orcid.org/0000-0001-8319-7256
  • Tukimin Bin Sansuwito Lincoln University College, Wisma Lincoln, 12-18, Jalan SS 6/12, 47301 Petaling Jaya, Selangor, Malaysia https://orcid.org/0000-0001-5308-7048
  • Sunarti . Biochemistry Department, Universitas Gadjah Mada, Indonesia

Abstract

This study aimed to determine the effect of antioxidants in Gude bean (Cajanus cajan) treatment on HOMA-IR level and IRS-1 gene expression on the rats induced with high fat and high fructose diet. This study used 25 male white rats (Rattus norvegicus) in two control groups and three treatment groups. The measurement of HOMA-IR was done before and after treatment using the blood plasma while IRS-1 measurement was after treatment using the muscle tissue. The results showed that rat blood glucose level after being induced high fat and high fructose diet reached average value higher (p<0.05) compared to the Normal group. The Gude bean treatment resulted the decrease of HOMA-IR level (p<0.05) and the increase of IRS-1 (p<0.05). Gude bean treatment can inhibit insulin signal interference by ROS synthesis inhabitation by decreasing HOMA-IR level and increase IRS-1 gene expression in rats induced high fat and fructose diet.

Keywords: Gude bean, antioxidant, HOMA-IR, IRS-1

Downloads

Download data is not yet available.

References

Amri, Z., Ben Khedher, M. R., Zaibi, M. S., Kharroubi, W., Turki, M., Ayadi, F., & Hammami, M. (2020). Anti-diabetic effects of pomegranate extracts in long-term high fructose-fat fed rats. Clinical Phytoscience, 6(1), 1-9. https://doi.org/10.1186/s40816-020-00202-y
Mandal, D., Sarkar, T., & Chakraborty, R. (2023). Critical review on nutritional, bioactive, and medicinal potential of spices and herbs and their application in food fortification and nanotechnology. Applied Biochemistry and Biotechnology, 195(2), 1319-1513. https://doi.org/10.1007/s12010-022-04132-y
Birnbaum, M. J. (2001). Turning down insulin signaling. The Journal of clinical investigation, 108(5), 655-659.
Bonora, E., Formentini, G., Calcaterra, F., Lombardi, S., Marini, F., Zenari, L., ... & Muggeo, M. (2002). HOMA-estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects: prospective data from the Verona Diabetes Complications Study. Diabetes care, 25(7), 1135-1141. https://doi.org/10.2337/diacare.25.7.1135
Calvo-Ochoa, E., Hernández-Ortega, K., Ferrera, P., Morimoto, S., & Arias, C. (2014). Short-term high-fat-and-fructose feeding produces insulin signaling alterations accompanied by neurite and synaptic reduction and astroglial activation in the rat hippocampus. Journal of Cerebral Blood Flow & Metabolism, 34(6), 1001-1008. https://doi.org/10.1038/jcbfm.2014.48
DeFronzo, R. A., & Tripathy, D. (2009). Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes care, 32(Suppl 2), S157. https://doi.org/10.2337/dc09-S302
El-Sheikh, N. M., & El Fattah, H. M. (2011). Counteracting methionine choline-deficient diet-induced fatty liver by administration of turmeric and silymarin. J Appl Sci Res, 7(12), 1812-20.
Ferramosca, A., Di Giacomo, M., & Zara, V. (2017). Antioxidant dietary approach in treatment of fatty liver: New insights and updates. World Journal of Gastroenterology, 23(23), 4146. https://doi.org/10.3748/wjg.v23.i23.4146
Jensen, Thomas, Manal F. Abdelmalek, Shelby Sullivan, Kristen J. Nadeau, Melanie Green, Carlos Roncal, Takahiko Nakagawa et al. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. Journal of hepatology 68, no. 5 (2018): 1063-1075. https://doi.org/10.1016/j.jhep.2018.01.019
Kupsco, A., Kioumourtzoglou, M. A., Just, A. C., Amarasiriwardena, C., Estrada-Gutierrez, G., Cantoral, A., ... & Téllez-Rojo, M. M. (2019). Prenatal metal concentrations and childhood cardio-metabolic risk using Bayesian Kernel Machine Regression to assess mixture and interaction effects. Epidemiology (Cambridge, Mass.), 30(2), 263. https://doi.org/10.1097/EDE.0000000000000962
Kuzgun, G., Başaran, R., Arıoğlu İnan, E., & Can Eke, B. (2020). Effects of insulin treatment on hepatic CYP1A1 and CYP2E1 activities and lipid peroxidation levels in streptozotocin-induced diabetic rats. Journal of Diabetes & Metabolic Disorders, 19, 1157-1164. https://doi.org/10.1007/s40200-020-00616-y
Nurrahman, N., Astuti, M., Suparmo, S., & Soesatyo, M. H. (2012). Pertumbuhan Jamur, Sifat Organoleptik dan Aktivitas Antioksidan Tempe Kedelai Hitam yang Diproduksi dengan Berbagai Jenis Inokulum. Agritech, 32(1). https://doi.org/10.22146/agritech.9657
Park, K., Gross, M., Lee, D. H., Holvoet, P., Himes, J. H., Shikany, J. M., & Jacobs Jr, D. R. (2009). Oxidative stress and insulin resistance: the coronary artery risk development in young adults study. Diabetes care, 32(7), 1302-1307. https://doi.org/10.2337/dc09-0259
Reeves, P. G., Nielsen, F. H., & Fahey Jr, G. C. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. The Journal of nutrition, 123(11), 1939-1951. https://doi.org/10.1093/jn/123.11.1939
Sohouli, M. H., Haghshenas, N., Hernández‐Ruiz, Á., & Shidfar, F. (2022). Consumption of sesame seeds and sesame products has favorable effects on blood glucose levels but not on insulin resistance: A systematic review and meta‐analysis of controlled clinical trials. Phytotherapy Research, 36(3), 1126-1134. https://doi.org/10.1002/ptr.7379
Syamsul, E. S., Jubaidah, S., Wijaya, H., Lestari, D., & Poddar, S. (2022). Antioxidant activity test of red Pidada leaves (Sonneratia caseolaris L.) using ABTS method (2, 2-azinobis-(3-ethylbenzothiazolin)-6-sulfonicacid). Research Journal of Pharmacy and Technology, 15(9), 3957-3961. https://doi.org/10.52711/0974-360X.2022.00663
Taskinen, M. R., Packard, C. J., & Borén, J. (2019). Dietary fructose and the metabolic syndrome. Nutrients, 11(9), 1987. https://doi.org/10.3390/nu11091987
Hossain, M. B., Ahmed, L., Martin-Diana, A. B., Brunton, N. P., & Barry-Ryan, C. (2023). Individual and Combined Antioxidant Activity of Spices and Spice Phenolics. Antioxidants, 12(2), 308. https://doi.org/10.3390/antiox12020308
Wilcox G. (2005). Insulin and insulin resistance. The Clinical biochemist. Reviews, 26(2), 19–39.Yuliani, N. N., Sambara, J., Poddar, S., & Das, U. (2022). Formulation and characterization of Sauropus androgynous (L) Merr leaf extract Gel in Combination with CMC-Na and Carbopol 940 Using DPPH Method. Research Journal of Pharmacy and Technology, 15(11), 5211-5216. https://doi.org/10.52711/0974-360X.2022.00878
Zick, Y. (2003). Role of Ser/Thr kinases in the uncoupling of insulin signaling. International Journal of Obesity, 27(3), S56-S60. https://doi.org/10.1038/sj.ijo.0802503
Statistics
257 Views | 223 Downloads
How to Cite
Maharini, F., Sansuwito, T., & ., S. (2024). Antioxidant Effects of Gude Bean (Cajanus cajan) to Homa-IR and IRS-1 of High Fat and High Fructose Diet Rats. International Journal of Advancement in Life Sciences Research, 7(1), 73-81. https://doi.org/https://doi.org/10.31632/ijalsr.2024.v07i01.008