Review on Animal Diseases Resistance and Adaptation Improvement through Molecular Genetics
Diseases Resistance and Adaptation
Abstract
This review is conducted to highlight the application of molecular genetics for improvement of diseases resistance in livestock. Diseases prevention is a serious issue to restrict economic damage due to economically important diseases outbreaks worldwide. Over the last decades, the excessive use of drugs has been criticised because of the possible development of drug-resistant zoonotic organisms and the potential dangers of drug residues in food animal products for human consumption. To prevent this problem following the ways for host resistance improvement to disease is a low cost and sustainable approach. So, this literature review was done on the theory of how to use molecular markers to select for quantitative trait loci (QTL) in genetic improvement programs, both within populations and for introgression of QTL from one population to another. If the effect of each marker is known, then an animal with no available phenotype for disease can be genotyped and its direct genomic value can be estimated based on its genotype only. The advantage of such a method is that accurate estimates of genetic merit can be achieved exploiting knowledge of the genotype of the animal even if the animal is very young. So, it is possible to put recommendation for further research on the generation of phenotypes that are resistant to diseases and development accurate bio-markers that can be readily measured in large numbers of animals at a relatively low cost.
Downloads
References
Aleri, J. W., Hine, B. C., Pyman, M. F., Mansell, P. D., Wales, W. J., Mallard, B. A., & Fisher, A. D. (2015). Immune function as a predictor of dairy cattle health and disease. In Australian Cattle and Sheep Veterinarians Conference. Hobart, Australia.
Barton, N. H., & Keightley, P. D. (2002). Understanding quantitative genetic variation. Nature Reviews Genetics, 3(1), 11-21. https://doi.org/10.1038/nrg700
Berry, D. P., Kearney, F., & Harris, B. L. (2009). Genomic selection in Ireland. Interbull Bulletin, (39), 29-29.
Breuer, K., Foroushani, A. K., Laird, M. R., Chen, C., Sribnaia, A., Lo, R., ... & Lynn, D. J. (2013). InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation. Nucleic acids research, 41(D1), D1228-D1233. https://doi.org/10.1093/nar/gks1147
Dekkers, J. C. (2004). Commercial application of marker-and gene-assisted selection in livestock: strategies and lessons. Journal of animal science, 82(suppl_13), E313-E328. https://doi.org/10.2527/2004.8213_supplE313x
Freeman, J. L., Perry, G. H., Feuk, L., Redon, R., McCarroll, S. A., Altshuler, D. M., ... & Lee, C. (2006). Copy number variation: new insights in genome diversity. Genome research, 16(8), 949-961. http://www.genome.org/cgi/doi/10.1101/gr.3677206
Gibson, G., & Weir, B. (2005). The quantitative genetics of transcription. TRENDS in Genetics, 21(11), 616-623. https://doi.org/10.1016/j.tig.2005.08.010
Gillespie, J. H. (1994). The causes of molecular evolution (Vol. 2). Oxford University Press On Demand.
Hanotte, O., Ronin, Y., Agaba, M., Nilsson, P., Gelhaus, A., Horstmann, R., ... & Teale, A. (2003). Mapping of quantitative trait loci controlling trypanotolerance in a cross of tolerant West African N'Dama and susceptible East African Boran cattle. Proceedings of the National Academy of Sciences, 100(13), 7443-7448. https://doi.org/10.1073/pnas.1232392100
Hanset, R., C. Dasnoi, S. Scalais, C. Michaux and L. Grobet. 1995. Effets de l’introgression dons le genome Piétrain de l’allele normal aux locus de sensibilitéal’halothane. Genet. Select. Evol., 27: 77-88.
Hine, B. C., Mallard, B. A., Ingham, A. B., & Colditz, I. G. (2014). Immune competence in livestock. Breeding focus.
Jacobi A. 1880.Treatise on diphtheria. William Wood and Co., New York, 32-33.
Jie, H., & Liu, Y. P. (2011). Breeding for disease resistance in poultry: opportunities with challenges. World's Poultry Science Journal, 67(4), 687-696. https://doi.org/10.1017/S0043933911000766
Mackay TF. (2001) The genetic architecture of quantitative traits. Annu Rev Genet. 35:303-39. https://doi.org/doi: 10.1146/annurev.genet.35.102401.090633.
MacKenzie, K., & Bishop, S. C. (1999). A discrete-time epidemiological model to quantify selection for disease resistance. Animal Science, 69(3), 543-551. https://doi.org/10.1017/S1357729800051390
Maillard, J. C., Berthier, D., Chantal, I., Thevenon, S., Sidibé, I., Stachurski, F., ... & Elsen, J. M. (2003). Selection assisted by a BoLA-DR/DQ haplotype against susceptibility to bovine dermatophilosis. Genetics Selection Evolution, 35(1), 1-8. https://doi.org/10.1186/1297-9686-35-S1-S193
Mallard, B. A., & Wilkie, B. N. (2007). Phenotypic, genetic and epigenetic variation of immune response and disease resistance traits of pigs. Advances in Pork Production, 18, 139-146.
Mallard, B. A., Emam, M., Paibomesai, M., Thompson-Crispi, K., & Wagter-Lesperance, L. (2015). Genetic selection of cattle for improved immunity and health. Japanese Journal of Veterinary Research, 63(Supplement 1), S37-S44. https://doi.org/10.14943/jjvr.63.suppl.s37
Miglior, F., Muir, B. L., & Van Doormaal, B. J. (2005). Selection indices in Holstein cattle of various countries. Journal of dairy science, 88(3), 1255-1263. https://doi.org/10.3168/jds.S0022-0302(05)72792-2
Naqvi, A. N. (2007). Application of molecular genetic technologies in livestock production: potentials for developing countries. Advances in Biological Research, 1(3-4), 72-84.
Nielsen, R. (2001). Statistical tests of selective neutrality in the age of genomics. Heredity, 86(6), 641-647. https://doi.org/10.1046/j.1365-2540.2001.00895.x
Phillips, P. C. (2005). Testing hypotheses regarding the genetics of adaptation. Genetica, 123(1), 15-24. https://doi.org/10.1007/s10709-004-2704-1
Pritchard, J. K., and M. Przeworski. 2001. Linkage disequilibrium in humans: models and data. American Journal of Human Genetics, 69: 1–14. https://doi.org/10.1086/321275
Sørensen, T. I., Nielsen, G. G., Andersen, P. K., & Teasdale, T. W. (1988). Genetic and environmental influences on premature death in adult adoptees. New England Journal of Medicine, 318(12), 727-732. https://doi.org/10.1056/NEJM198803243181202
Thompson-Crispi, K. A., Hine, B., Quinton, M., Miglior, F., & Mallard, B. A. (2012). Association of disease incidence and adaptive immune response in Holstein dairy cows. Journal of Dairy Science, 95(7), 3888-3893. https://doi.org/10.3168/jds.2011-5201
Thompson-Crispi, K., Atalla, H., Miglior, F., & Mallard, B. A. (2014). Bovine mastitis: frontiers in immunogenetics. Frontiers in Immunology, 5, 493. https://doi.org/10.3389/fimmu.2014.00493
Vallejo, R. L., Bacon, L. D., Liu, H. C., Witter, R. L., Groenen, M. A., Hillel, J., & Cheng, H. H. (1998). Genetic mapping of quantitative trait loci affecting susceptibility to Marek's disease virus induced tumors in F2 intercross chickens. Genetics, 148(1), 349-360.https://doi.org/10.1093/genetics/148.1.349
Van der Zijpp, A. J. (1983). Breeding for immune responsiveness and disease resistance. World's Poultry Science Journal, 39(2), 118-131. https://doi.org/10.1079/WPS19830012
Yancovich, A., Levin, I., Cahaner, A., & Hillel, J. (1996). Introgression of the avian naked neck gene assisted by DNA fingerprints. Animal Genetics, 27(3), 149-155. https://doi.org/10.1111/j.1365-2052.1996.tb00942.x
Yonash, N., Bacon, L. D., Witter, R. L., & Cheng, H. H. (1999). High resolution mapping and identification of new quantitative trait loci (QTL) affecting susceptibility to Marek’s disease. Animal genetics, 30(2), 126-135. https://doi.org/10.1046/j.1365-2052.1999.00457.x
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.