Optimising Saltwater Coolants in Peltier-Based Systems for Enhanced Fever Management and Energy Efficiency
Abstract
Fever management in paediatric care requires efficient and reliable cooling systems; however, traditional methods often fail to meet these demands due to discomfort and maintenance challenges. This study investigates the effectiveness of different saltwater concentrations (5%, 10%, and 20%) as coolants in a Peltier-based cooling system designed to enhance cooling efficiency for paediatric fever management. The research aims to identify the optimal salt concentration that maximises cooling performance and energy efficiency. An experimental setup was used to compare the cooling performance of the three saltwater solutions against pure water, with temperature data collected at one-minute intervals over a 60-minute period. Key parameters measured included temperature reduction and energy consumption. The results demonstrated that the 10% saltwater solution achieved the greatest temperature reduction and energy efficiency, significantly outperforming both the higher (20%) and lower (5%) salt concentrations, as well as pure water. In contrast, the 20% saltwater solution initially exhibited a temperature increase, likely due to its higher viscosity, which hindered heat dissipation. The 5% saltwater solution provided only marginal improvements over pure water, indicating the necessity of an optimal salt concentration for effective cooling. These findings suggest that optimising salt concentration in coolants is critical for enhancing the performance of Peltier-based cooling systems, particularly in medical applications requiring precise temperature control. The study provides valuable insights for developing more efficient and reliable fever management systems, with broader implications for various medical and industrial cooling applications.
Downloads
References
Ademola, A. A. (2020). Theoretical and Experimental Analysis of a Thermoelectric. Low-temperature Technologies, 59. https://doi.org/10.5772/intechopen.88664
Ahamat, M. A., Abidin, R., Roslin, E. N., & Chieh, O. Y. (2019). Thermoelectric water cooler and heater with intermediate water tank. International Journal of Engineering and Advanced Technology, 8(6), 3424–3427. https://doi.org/10.35940/ijeat.f9513.088619
Ajiwiguna, T. A., Azizah, A. N., & Suhendi, A. (2023, December). Investigation of Performance Estimation Methods Validity of Thermoelectric Module. In Journal of Physics: Conference Series (Vol. 2673, No. 1, p. 012018). IOP Publishing. https://doi.org/10.1088/1742-6596/2673/1/012018
Ali, F.A.M.A., Reda, S.M.A.M., Hussein, M.A.M., Ayed, S.K., Jassim, L., Majdi, H.S. (2023). Thermoelectric-Driven room air cooling via a multi-u shaped heat sink system. International Journal of Heat and Technology, 41(4), 1000-1006. https://doi.org/10.18280/ijht.410421
Atta, R. M. (2018). Thermoelectric cooling. Bringing Thermoelectricity into Reality, 247-267. https://doi.org/10.5772/intechopen.75791
Balaji, P. S., & Irons, M. A. Thermoelectric cooling in greenhouses: Implications for small-holder production. https://doi.org/10.59720/22-055
Belarbi, A. A., Beriache, M. H., Che Sidik, N. A., & Mamat, R. (2021). Experimental investigation on controlled cooling by coupling of thermoelectric and an air impinging jet for CPU. Heat Transfer, 50(3), 2242-2258. https://doi.org/10.1002/htj.21976
Bertille, N., Purssell, E., Hjelm, N., Bilenko, N., Chiappini, E., De Bont, E. G., ... & Chalumeau, M. (2018). Symptomatic management of febrile illnesses in children: a systematic review and meta-analysis of parents' knowledge and behaviors and their evolution over time. Frontiers in Paediatrics, 6, 279. https://doi.org/10.3389/fped.2018.00279
Ceviz, M. A., Afshari, F., Muratçobanoğlu, B., Ceylan, M., & Manay, E. (2023). Computational fluid dynamics simulation and experimental investigation of a thermoelectric system for predicting influence of applied voltage and cooling water on cooling performance. International Journal of Numerical Methods for Heat & Fluid Flow, 33(1), 241-262. https://doi.org/10.1108/hff-03-2022-0160
Choi, S., Yang, H., Noh, Y., Kim, G., Kwon, E., & Yoo, H. (2024). Fpga-based multi-channel real-time data acquisition system. Electronics, 13(15), 2950. https://doi.org/10.3390/electronics13152950
Chok, R., Price, V., Steele, M., Corriveau-Bourque, C., & Bruce, A. (2022). Paediatric benign neutropenia: assessing practice preferences in Canada. Journal of Paediatric Hematology/Oncology, 44(6), 318-322. https://doi.org/10.1097/mph.0000000000002427
De Meneck, F., Santana, V., Brioschi, G. C., Haddad, D. S., Neves, E. B., Franco, M. D. C., & Brioschi, M. L. (2023). Infrared imaging of the brain-eyelid thermal tunnel: A promising method for measuring body temperature in afebrile children. International Journal of Environmental Research and Public Health, 20(19). https://doi.org/10.3390/ijerph20196867
Dehra, H. (2018). Building-integrated thermoelectric cooling-photovoltaic (TEC-PV) devices. Bringing Thermoelectricity into Reality. https://doi.org/10.5772/intechopen.75472
Di, C. H., & Jahn, W. (2021). Performance Assessment of Thermoelectric Self-Cooling Systems for Electronic Devices. Applied Thermal Engineering, 193, 117020. https://doi.org/10.1016/j.applthermaleng.2021.117020
dos Santos, F. N. Q., Colmanetti, A. R. A., Cabezas-Gómez, L., & Tibiriçá, C. B. (2022). Concept, modeling and experimental evaluation of an integrated cooling, heating and thermoelectric generation system. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(10), 481. https://doi.org/10.1007/s40430-022-03791-6
Elseady, G., Khalifa, M. I., Okby, O. M., & Fayed, N. M. (2021). Quality of Care Provided by Paediatric Nurses for the Management of Fever in Children. Menoufia Nursing Journal, 6(1), 157-166. https://doi.org/10.21608/menj.2021.187193
Fan, K., Xiao, J., Wang, R., & Gao, R. (2022). Thermoelectric-based cooling system for high-speed motorized spindle I: Design and control mechanism. The International Journal of Advanced Manufacturing Technology, 121(5), 3787-3800. https://doi.org/10.1007/s00170-022-09568-4
Hijano, A., Bergeret, F. S., Giazotto, F., & Braggio, A. (2023). Microwave-Assisted Thermoelectricity in S-I-S′ Tunnel Junctions. Physical Review Applied, 19(4), 044024. https://doi.org/10.1103/physrevapplied.19.044024
Hommalee, C., Wiriyasart, S., & Naphon, P. (2019). Development of cold‐hot water dispenser with thermoelectric module systems. Heat Transfer—Asian Research, 48(3), 854-863. https://doi.org/10.1002/htj.21409
Hong, S., Gu, Y., Seo, J. K., Wang, J., Liu, P., Meng, Y. S., ... & Chen, R. (2019). Wearable thermoelectrics for personalized thermoregulation. Science Advances, 5(5), eaaw0536. https://doi.org/10.1126/sciadv.aaw0536
Kim, M., Kang, Y. K., Joung, J., & Jeong, J. W. (2022). Cooling performance prediction for hydraulic thermoelectric radiant cooling panels with experimental validation. Sustainability, 14(23), 16214. https://doi.org/10.3390/su142316214
Kondratiev, V. V., Sysoev, I. A., Kolosov, A. D., Galishnikova, V. V., Gladkikh, V. A., Karlina, A. I., & Karlina, Y. I. (2022). Development and Testing of the Thermoelectric Thermal Energy Conversion Device in the Conditions of Existing Aluminum Production. Materials, 15(23), 8526. https://doi.org/10.3390/ma15238526
Lee, H. J., & Loh, K. J. (2021). Liquid vaporization actuated soft structures with active cooling and heat loss control. Smart Materials and Structures, 30(5), 055007. https://doi.org/10.1088/1361-665x/abeefb
Li, R., Wang, W., Shi, Y., Wang, C. T., & Wang, P. (2024). Advanced material design and engineering for water‐based evaporative cooling. Advanced Materials, 36(12), 2209460. https://doi.org/10.1002/adma.202209460
Liu, Z., Li, W., Zhang, L., Wu, Z., & Luo, Y. (2019). Experimental study and performance analysis of solar-driven exhaust air thermoelectric heat pump recovery system. Energy and Buildings, 186, 46-55. https://doi.org/10.1016/j.enbuild.2019.01.017
Moazzez, A. F., Najafi, G., Ghobadian, B., & Hoseini, S. S. (2020). Numerical simulation and experimental investigation of air cooling system using thermoelectric cooling system. Journal of Thermal Analysis and Calorimetry, 139, 2553-2563. https://doi.org/10.1007/s10973-019-08899-x
Niforatos, J. D., & Pescatore, R. (2019). Search Engine Queries for Paediatric Fever During" Cold and Flu" Season. Cureus, 11(4), e4464 https://doi.org/10.7759/cureus.4464
Parametpisit, P., Panmuang, P., Sonsilphong, A., & Soemphol, C. (2023). Experimental investigation of hybrid thermoelectric evaporative air-cooling system for crickets rearing process. Indonesian Journal of Electrical Engineering and Computer Science, 29(3), 1374-1381. https://doi.org/10.11591/ijeecs.v29.i3.pp1374-1381
Poojeera, S., Srichat, A., Naphon, N., & Naphon, P. (2022). Study on Thermal Performance of the Small-Scale Air Conditioning with Thermoelectric Cooling Module. Mathematical Modelling of Engineering Problems, 9(4). 1143–1151. https://doi.org/10.18280/mmep.090434
Rambabu, V. R., Kuppina, A. V. C., Gowravarapu, Kaviti, P. K., Gurugu, N. K., & Lanka, C. V. R. (2023). Design and Fabrication of Solar Powered Portable Thermoelectric Refrigerator. International Research Journal of Modernization in Engineering Technology and Science, 05(03), 1401-1403. https://doi.org/10.56726/irjmets34361
Ruiz‐Ortega, P. E., Olivares‐Robles, M. A., & Badillo‐Ruiz, C. A. (2021). Transient thermal behavior of a segmented thermoelectric cooler with variable cross‐sectional areas. International Journal of Energy Research, 45(13), 19215-19225. https://doi.org/10.1002/er.7123
Salim, B., Alsalam, B., & Al Rifaie, M. (2023). An Experimental Investigation of a Portable Solar Thermoelectric Fridge For Storing Some Vaccines. Authorea Preprints. http://dx.doi.org/10.22541/au.168717639.93235175/v1
Sari, H. N., B, I. M. A., Bramantyo, K. U., & Cholik, M. (2022). Performance Analysis of Electric Coolers TEC1-12706 and TEC1-12715 with Heatsinks at Semi-conductor Cooler Boxes. Proceedings of the International Joint Conference on Science and Engineering 2022 (IJCSE 2022). Atlantis Press International BV. https://doi.org/10.2991/978-94-6463-100-5_29
Şener, M., Arslan, F., Gürses, O., & GÜRLEK, G. (2022). Experimental investigation of thermoelectric self-cooling system for the cooling of ultrasonic transducer drivers. Politeknik Dergisi, 25(1), 169–175. https://doi.org/10.2339/politeknik.675379
Shapiro, D. J., & Fine, A. M. (2021). Patient ethnicity and paediatric visits to the emergency department for fever. Paediatric Emergency Care, 37(11), 555-559. https://doi.org/10.1097/pec.0000000000001945
Shilpa, M. K., Raheman, M. A., Aabid, A., Baig, M., Veeresha, R. K., & Kudva, N. (2023). A systematic review of thermoelectric peltier devices: Applications and limitations. FDMP-Fluid Dynamics & Materials Processing, 19(1), 187-206. https://doi.org/10.32604/fdmp.2022.020351
Shittu, S., Li, G., Zhao, X., Akhlaghi, Y. G., Ma, X., & Yu, M. (2019). Comparative study of a concentrated photovoltaic-thermoelectric system with and without flat plate heat pipe. Energy Conversion and Management, 193, 1-14. https://doi.org/10.1016/j.enconman.2019.04.055
Siahmargoi, M., Rahbar, N., Kargarsharifabad, H., Sadati, S. E., & Asadi, A. (2019). An experimental study on the performance evaluation and thermodynamic modeling of a thermoelectric cooler combined with two heatsinks. Scientific Reports, 9(1), 20336. https://doi.org/10.1038/s41598-019-56672-9
Sirikasemsuk, S., Wiriyasart, S., Naphon, P., & Naphon, N. (2021). Thermal cooling characteristics of Li‐ion battery pack with thermoelectric ferrofluid cooling module. International Journal of Energy Research, 45(6), 8824-8836. https://doi.org/10.1002/er.6417
Sirikasemsuk, S., Wiriyasart, S., Prurapark, R., Naphon, N., & Naphon, P. (2021). Water/Nanofluid Pulsating flow in thermoelectric module for cooling electric vehicle battery systems. International Journal of Heat & Technology, 39(5), 1618-1626. https://doi.org/10.18280/ijht.390525 .
Skovajsa, J., & Zalesak, M. (2018). The use of the photovoltaic system in combination with a thermal energy storage for heating and thermoelectric cooling. Applied Sciences, 8(10), 1750. https://doi.org/10.3390/app8101750
Sukarno, R., Premono, A., Gunawan, Y., & Wiyono, A. (2023, September). Experimental study of thermoelectric cooling system for a parked car with solar energy. In Journal of Physics: Conference Series (Vol. 2596, No. 1, p. 012052). IOP Publishing. https://doi.org/10.1088/1742-6596/2596/1/012052
Sunil, S. & Nagesh, S. (2019). Trends in Fever Management Prescriptions for Paediatric Patients in India. International Journal of Paediatrics and Geriatrics, 2(1), 58–64. https://doi.org/10.33545/26643685.2019.v2.i1a.231
Talebi, S., Shahrabadi, H., VAHIDI, S. A., Talebi, S., & Siyavoshi, M. (2016). Mothers’management Of Fever of Children in Sabzevar. Journal of Nursing and Midwifery Sciences, 3(2), 32-39. https://doi.org/10.18869/acadpub.jnms.3.2.32
Yuan, X. H., Qin, C. H., Wang, Y. P., & Liu, X. (2021). Characteristics analysis of small insulated vans based on thermoelectric cooling. Frontiers in Energy Research, 9, 740748. https://doi.org/10.3389/fenrg.2021.740748
Yuniati, F., Erwin, E., Shobur, S., Ardianty, S., & Sutrisno, S. (2025). Home fever management in children: a systematic review. International Journal of Public Health Science (IJPHS), 14(1), 529. https://doi.org/10.11591/ijphs.v14i1.24554
Zhang, F., Xu, X., Cheng, L., Wang, L., Liu, Z., & Zhang, L. (2019). Global moment‐independent sensitivity analysis of single‐stage thermoelectric refrigeration system. International Journal of Energy Research, 43(15), 9055-9064. https://doi.org/10.1002/er.4811
Zhang, Z., Zhang, Y., Sui, X., Li, W., & Xu, D. (2020). Performance of thermoelectric power-generation system for sufficient recovery and reuse of heat accumulated at cold side of TEG with water-cooling energy exchange circuit. Energies, 13(21), 5542. https://doi.org/10.3390/en13215542
Zhao, D., Yin, X., Xu, J., Tan, G., & Yang, R. (2020). Radiative sky cooling-assisted thermoelectric cooling system for building applications. Energy, 190, 5542. https://doi.org/10.1016/j.energy.2019.116322
Zhou, Y., Zhang, T., Wang, F., & Yu, Y. (2018). Performance analysis of a novel thermoelectric assisted indirect evaporative cooling system. Energy, 162, 299-308. https://doi.org/10.1016/j.energy.2018.08.013
Zhou, Y., Zhang, T., Wang, F., & Yu, Y. (2020). Numerical study and optimization of a combined thermoelectric assisted indirect evaporative cooling system. Journal of Thermal Science, 29, 1345-1354. https://doi.org/10.1007/s11630-020-1362-7

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
















.