Antibiofilm Efficacy of Phenolic Rich Fraction from Cinnamomum zeylanicum Bark against Pseudomonas aeruginosa

Abstract

Microbial biofilms augment the antibiotic the resistance of bacteria and poses challenges to treating chronic infections. Pseudomonas aeruginosa, an effective biofilm-forming bacterium, causes a variety of serious pathogenic manifestations including deadly lung, skin, and urinary tract infections. This study was carried out to investigate the anti-biofilm and anti-quorum sensing activity of phenolic compounds in Cinnamomum zeylanicum bark against P. aeruginosa. This study comprised the estimation of total phenolics in C. zeylanicum bark the methanolic extract, with column the chromatographic isolation of the phenolic-rich fraction from the methanolic extraction of the bark. GC-MS analysis, the minimum inhibitory concentration (MIC) and anti-biofilm activity against P. aeruginosa were studied. Phytochemical analysis illustrated the presence of 4.2% of condensed tannins (proanthocyanidins), a bioactive compound present in the methanol extract of the bark. Out of the 96 fractions that were collected from the column, fractions corresponding to 75 to 96 confirmed the presence of procyanidins. These fractions were pooled together to get phenolic-rich fraction of C. zeylanicum bark.   The GC-MS spectrum with a peak at 12.23 retention time confirmed the presence of procyanidins in phenolic-rich fraction of bark.  The MIC of phenolic rich fraction against P. aeruginosa was 12.5mg/ml. The efficacy in biofilm attenuation of phenolic-rich fraction of the bark at sub-MIC doses (1.56, 3.12, 6.25 mg/ml) was significant (P< 0.05) and was determined to 71± 8%, 55±7%, 33±4% respectively against P. aeruginosa, when compared to control. The inverse relation between sub-MIC doses and anti-biofilm efficacy revealed that the bioactive compounds triggered anti-biofilm activity without inducing the drug the resistance mechanism of the bacteria. The results showed procyanidin present in the C. zeylanicum bark has the efficacy to quench quorum sensing and inhibit biofilm formation in P. aeruginosa.  Hence, procyanidins present in the C. zeylanicum bark may be used as a novel molecule in drug design to treating recalcitrant infectious diseases.


 

Keywords: Anti-Biofilm, Bacterial the Motility, Phenolic Compounds, P. Aeruginosa, Quorum Sensing

Downloads

Download data is not yet available.

References

Carvalho, N. C. C., Monteiro, O. S., da Rocha, C. Q., Longato, G. B., Smith, R. E., da Silva, J. K. R., & Maia, J. G. S. (2022). Phytochemical analysis of the fruit pulp extracts from Annona crassiflora Mart. And evaluation of their antioxidant and Antiproliferative activities. Foods, 11(14). https://doi.org/10.3390/FOODS11142079
Casciaro, B., Lin, Q., Afonin, S., Loffredo, M. R., de Turris, V., Middel, V., Ulrich, A. S., Di, Y. P. P., & Mangoni, M. L. (2019). Inhibition of Pseudomonas aeruginosa biofilm formation and expression of virulence genes by selective epimerization in the peptide Esculentin-1a(1-21)NH2. The FEBS Journal, 286(19), 3874–3891. https://doi.org/10.1111/FEBS.14940
De Oliveira, C. B., Comunello, L. N., Lunardelli, A., Amaral, R. H., Pires, M. G., Da Silva, G. L., ... & Gosmann, G. (2012). Phenolic Enriched Extract of Baccharis trimera Presents Anti-inflammatory and Antioxidant Activities. Molecules 17(1), 1113-1123. https://doi.org/10.3390/MOLECULES17011113
Di Lorenzo, C., Frigerio, G., Colombo, F., de Sousa, L. P., Altindişli, A., Dell'Agli, M., & Restani, P. (2016). Phenolic profile and antioxidant activity of different raisin (Vitis vinifera L.) samples. In BIO Web of Conferences (Vol. 7, p. 04006). EDP Sciences. https://doi.org/10.1051/BIOCONF/20160704006
Enogieru, A. B., & Williams, B. T. (2024). Cognitive- and memory-enhancing activity of Cinnamon (Cinnamomum zeylanicum) aqueous extract in lead acetate-exposed rats. Journal of Trace Elements and Minerals, 9, https://doi.org/10.1016/J.JTEMIN.2024.100189
Garcia-Clemente, M., de la Rosa, D., Máiz, L., Girón, R., Blanco, M., Olveira, C., Canton, R., & Martinez-García, M. A. (2020). Impact of Pseudomonas aeruginosa Infection on Patients with Chronic Inflammatory Airway Diseases. Journal of Clinical Medicine, 9(12). https://doi.org/10.3390/JCM9123800
Gunawardena, D., Govindaraghavan, S., & Münch, G. (2014). Anti-inflammatory properties of cinnamon polyphenols and their monomeric precursors. In Polyphenols in Human Health and Disease, 1, 409–425. https://doi.org/10.1016/B978-0-12-398456-2.00030-X
Jiang, Q., Chen, J., Yang, C., Yin, Y., & Yao, K. (2019). Quorum sensing: a prospective therapeutic target for bacterial diseases. BioMed Research International, 2019(1). https://doi.org/10.1155/2019/2015978
Kamiya, M., Mori, T., Nomura, M., Inagaki, T., Nonogaki, T., Nagatsu, A., Yamagishi, Y., Mikamo, H., & Ikeda, Y. (2019). Tradescantia pallida extract inhibits biofilm formation in Pseudomonas aeruginosa. Nagoya Journal of Medical Science, 81(3). https://doi.org/10.18999/NAGJMS.81.3.439
Karamać, M., Kosińska, A., & Chavan, U. D. (2005). Rapid chromatographic method for separation of green tea proanthocyanidins. Polish Journal of Food and Nutrition Sciences, 55(3), 243–247. https://journal.pan.olsztyn.pl/RAPID-CHROMATOGRAPHIC-METHOD-FOR-SEPARATION-OF-GREEN-TEA-PROANTHOCYANIDINS,97879,0,2.html
Khoddami, A., Wilkes, M. A., & Roberts, T. H. (2013). Techniques for analysis of plant phenolic compounds. Molecules (Basel, Switzerland), 18(2), 2328–2375. https://doi.org/10.3390/MOLECULES18022328
Kowalska-Krochmal, B., & Dudek-Wicher, R. (2021). The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens (Basel, Switzerland), 10(2), 1–21. https://doi.org/10.3390/PATHOGENS10020165
Lou, Z., Letsididi, K. S., Yu, F., Pei, Z., Wang, H., & Letsididi, A. R. (2019). Inhibitive effect of eugenol and its nanoemulsion on quorum sensing–mediated virulence factors and biofilm formation by Pseudomonas aeruginosa. Journal of Food Protection, 82(3), 379–389. https://doi.org/10.4315/0362-028X.JFP-18-196
Mateos-Martín, M. L., Fuguet, E., Quero, C., Pérez-Jiménez, J., & Torres, J. L. (2012). New identification of proanthocyanidins in cinnamon (Cinnamomum zeylanicum L.) using MALDI-TOF/TOF mass spectrometry. Analytical and Bioanalytical Chemistry, 402(3), 1327–1336. https://doi.org/10.1007/S00216-011-5557-3
Mogana, R., Adhikari, A., Tzar, M. N., Ramliza, R., & Wiart, C. (2020). Antibacterial activities of the extracts, fractions and isolated compounds from canarium patentinervium miq. Against bacterial clinical isolates. BMC Complementary Medicine and Therapies, 20(1), 1–11. https://doi.org/10.1186/S12906-020-2837-5/FIGURES/6
Molole, G. J., Gure, A., & Abdissa, N. (2022). Determination of total phenolic content and antioxidant activity of Commiphora mollis (Oliv.) Engl. resin. BMC Chemistry, 16(1), 1–11. https://doi.org/10.1186/S13065-022-00841-X/TABLES/2
Moreno-Gámez, S., Hochberg, M. E., & van Doorn, G. S. (2023). Quorum sensing as a mechanism to harness the wisdom of the crowds. Nature Communications, 14(1), 1–10. https://doi.org/10.1038/s41467-023-37950-7
Murray, T. S., Ledizet, M., & Kazmierczak, B. I. (2010). Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates. Journal of Medical Microbiology, 59(5), 511–520. https://doi.org/10.1099/JMM.0.017715-0
Naga, N. G., Zaki, A. A., El-Badan, D. E., Rateb, H. S., Ghanem, K. M., & Shaaban, M. I. (2023). Inhibition of Pseudomonas aeruginosa quorum sensing by methyl gallate from Mangifera indica. Scientific Reports, 13(1), 1–12. https://doi.org/10.1038/s41598-023-44063-0
Okaro, U., Mou, S., Lenkoue, G., Williams, J. A., Bonagofski, A., Larson, P., ... & DeShazer, D. (2022). A type IVB pilin influences twitching motility and in vitro adhesion to epithelial cells in Burkholderia pseudomallei. Microbiology, 168(3), 1-12. https://doi.org/10.1099/MIC.0.001150
Otton, L. M., da Silva Campos, M., Meneghetti, K. L., & Corção, G. (2017). Influence of twitching and swarming motilities on biofilm formation in Pseudomonas strains. Archives of Microbiology, 199, 677–682. https://doi.org/10.1007/S00203-017-1344-7
Oura, H., Tashiro, Y., Toyofuku, M., Ueda, K., Kiyokawa, T., Ito, S., Takahashi, Y., Lee, S., Nojiri, H., Nakajima-Kambe, T., Uchiyama, H., Futamata, H., & Nomura, N. (2015). Inhibition of Pseudomonas aeruginosa swarming motility by 1-naphthol and other bicyclic compounds bearing hydroxyl groups. Applied and Environmental Microbiology, 81(8), 2808–2818. https://doi.org/10.1128/AEM.04220-14
Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J., & Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances, 37(1), 177–192. https://doi.org/10.1016/J.BIOTECHADV.2018.11.013
Rather, M. A., Gupta, K., & Mandal, M. (2021). Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Brazilian Journal of Microbiology, 52, 1701-1718. https://doi.org/10.1007/S42770-021-00624-X
Sajewicz, M., Staszek, D., Waksmundzka-Hajnos, M., & Kowalska, T. (2012). Comparison of TLC and HPLC fingerprints of phenolic acids and flavonoids fractions derived from selected sage (Salvia) species. Journal of Liquid Chromatography and Related Technologies, 35(10), 1388–1403. https://doi.org/10.1080/10826076.2012.676463
Sharma, A. K., Gangwar, M., Kumar, D., Nath, G., Sinha, A. S. K., & Tripathi, Y. B. (2016). Phytochemical characterization, antimicrobial activity and reducing potential of seed oil, latex, machine oil and presscake of Jatropha curcas. Avicenna Journal of Phytomedicine, 6(4), 366-375. https://pmc.ncbi.nlm.nih.gov/articles/PMC4967832/
Shoqairan, Y. I., Darwish, H. K., Hamami, M. A. H., Al-Juhaimi, F. Y., Mohamed Ahmed, I. A., & Babiker, E. E. (2023). The influence of cinnamon powder on the antioxidant and antimicrobial properties of beef burger during refrigerated storage. LWT, 188. https://doi.org/10.1016/J.LWT.2023.115422
Shrestha, L., Fan, H. M., Tao, H. R., & Huang, J. D. (2022). Recent Strategies to Combat Biofilms Using Antimicrobial Agents and Therapeutic Approaches. Pathogens, 11(3). https://doi.org/10.3390/PATHOGENS11030292
Subramanian, R., Subbramaniyan, P., & Raj, V. (2013). Antioxidant activity of the stem bark of Shorea roxburghii and its silver reducing power. SpringerPlus, 2, 1–11. https://doi.org/10.1186/2193-1801-2-28/FIGURES/3
Sun, W., & Shahrajabian, M. H. (2023). Therapeutic Potential of Phenolic Compounds in Medicinal Plants-Natural Health Sun Products for Human Health. Molecules 28(4). https://doi.org/10.3390/MOLECULES28041845
Takó, M., Kerekes, E. B., Zambrano, C., Kotogán, A., Papp, T., Krisch, J., & Vágvölgyi, C. (2020). Plant Phenolics and Phenolic-Enriched Extracts as Antimicrobial Agents against Food-Contaminating Microorganisms. Antioxidants, 9(2). https://doi.org/10.3390/ANTIOX9020165
Thi, M. T. T., Wibowo, D., & Rehm, B. H. A. (2020). Pseudomonas aeruginosa Biofilms. International Journal of Molecular Sciences, 21(22). https://doi.org/10.3390/IJMS21228671
Tsamo, A. T., Mohammed, M., & Dakora, F. D. (2020). Metabolite fingerprinting of kersting’s groundnut [ macrotyloma geocarpum (Harms) Maréchal & Baudet] seeds using uplc-qtof-ms reveals the nutraceutical and antioxidant potentials of the orphan legume. Frontiers in Nutrition, 7. https://doi.org/10.3389/FNUT.2020.593436
Vestby, L. K., Grønseth, T., Simm, R., & Nesse, L. L. (2020). Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics, 9(2). https://doi.org/10.3390/ANTIBIOTICS9020059
Villanueva, X., Zhen, L., Ares, J. N., Vackier, T., Lange, H., Crestini, C., & Steenackers, H. P. (2023). Effect of chemical modifications of tannins on their antimicrobial and antibiofilm effect against Gram-negative and Gram-positive bacteria. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.987164
Yanakiev, S. (2020). Effects of Cinnamon (Cinnamomum spp.) in Dentistry: A Review. Molecules, 25(18). https://doi.org/10.3390/MOLECULES25184184
Ye, Z., Ye, L., Li, D., Lin, S., Deng, W., Zhang, L., Liang, J., Li, J., Wei, Q., & Wang, K. (2022). Effects of daphnetin on biofilm formation and motility of pseudomonas aeruginosa. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.1033540
Zegadło, K., Gieroń, M., Żarnowiec, P., Durlik-Popińska, K., Kręcisz, B., Kaca, W., & Czerwonka, G. (2023). Bacterial motility and its role in skin and wound infections. International Journal of Molecular Sciences, 24. https://doi.org/10.3390/IJMS24021707
Zhao, A., Sun, J., & Liu, Y. (2023). Understanding bacterial biofilms: From definition to treatment strategies. Frontiers in Cellular and Infection Microbiology, 13. https://doi.org/10.3389/fcimb.2023.1137947
Statistics
315 Views | 270 Downloads
How to Cite
B., V., Firdous, J., R., M., T., K., A., S., V., A., & Jeyachristy, S. (2025). Antibiofilm Efficacy of Phenolic Rich Fraction from Cinnamomum zeylanicum Bark against Pseudomonas aeruginosa. International Journal of Advancement in Life Sciences Research, 8(1), 89-99. https://doi.org/https://doi.org/10.31632/ijalsr.2025.v08i01.008