Enhancing Ezetimibe Absorption: Formation and Characterization of Drug Cocrystals with Carboxylic Acid Coformers

Abstract

Background: Ezetimibe (EZT) is a newer FDA-approved drug that inhibits cholesterol absorption in the intestines without affecting the uptake of fat-soluble vitamins. However, EZT is classified under the Biopharmaceutics Classification System (BCS) as a Class II drug, characterised by low solubility and limited absorption. Objective: This study aims to enhance the solubility and bioavailability of EZT through cocrystallisation with carboxylic acid coformers. Methods: Cocrystals were prepared using the solvent-drop grinding technique. Characterisation was performed using Particle Size Analysis (PSA), Powder X-ray Diffraction (PXRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and dissolution testing. Results: The EZT cocrystals exhibited a smaller particle size (0.728 µm) compared to pure EZT (1.049 µm), and PXRD analysis confirmed the formation of a new crystalline phase. DSC results showed a reduced melting point for the cocrystal (76.99°C) compared to pure EZT (81.54°C), while FTIR spectra indicated the formation of hydrogen bonds. SEM images revealed that the cocrystals had a more fragmented and rougher morphology compared to the smoother particles of pure EZT. Dissolution testing demonstrated enhanced solubility, with 49.13% of the EZT cocrystal dissolved at 15 minutes versus 13.90% for pure EZT, indicating improved potential for absorption and therapeutic efficacy. Conclusion: The formation of EZT cocrystals significantly enhances the drug’s solubility and absorption, supporting the potential of cocrystallisation as an effective strategy for improving the bioavailability of poorly soluble drugs.

Keywords: Absorption, Cholesterol, Ezetimibe Co-Crystal, Solvent Drop Grinding Ezetimibe

Downloads

Download data is not yet available.

References

Alatas, F., Azizsidiq, F. A., Sutarna, T. H., Ratih, H., & Soewandhi, S. N. (2020). Perbaikan Kelarutan Albendazol melalui Pembentukan Kristal Multikomponen dengan Asam Malat [Improvement of albendazol solubility through multicomponent crystal formation with malic acid]. Galenika Journal of Pharmacy, 6(1), 114–123.https://doi.org/10.22487/j24428744.2020.v6.i1.14998
Ancheria, R. K., Jain, S., Kumar, D., Soni, S. L., & Sharma, M. (2019). An overview of pharmaceutical co-crystal. Asian Journal of Pharmaceutical Research and Development, 7(2), 39-46.https://doi.org/10.22270/ajprd.v7i2.483
Aris, P., Mohamadzadeh, M., Zarei, M., & Xia, X. (2024). Computational Design of Novel Griseofulvin Derivatives Demonstrating Potential Antibacterial Activity: Insights from Molecular Docking and Molecular Dynamics Simulation. International Journal of Mlecular Sciences, 25(2), 1039.https://doi.org/10.3390/ijms25021039
Asati, A. V., Salunkhe, K. S., Singh Rajput, R. P., Chintamani, S. R., Khairnar, A. U., Patil, N. S., & Chintamani, R. N. (2023). Co-Crystals: a novel approach to improve the solubility of apixaban. International Journal of Pharmaceutical Investigation, 13(2), 243-247. Available at: https://jpionline.org/storage/2023/05/IntJPharmInvestigation-13-2-243.pdf
D’Abbrunzo, I., Procida, G., & Perissutti, B. (2023). Praziquantel fifty years on: A comprehensive overview of its solid state. Pharmaceutics, 16(1). https://doi.org/10.3390/pharmaceutics16010027
Ding, P., Liu, Z., Wu, Y., Zong, C., Wang, Y., Xu, Y., ... & Wang, L. (2025). Preparation, structure characterization and solubility of one cocrystal and one salt of Imatinib with Citric acid and Fumaric acid. Journal of Molecular Structure,1333, 141769. https://ui.adsabs.harvard.edu/link_gateway/2025JMoSt133341769D/doi:10.1016/j.molstruc.2025.141769
Dyba, A. J., Wiacek, E., Nowak, M., Janczak, J., Nartowski, K. P., & Braun, D. E. (2023). Metronidazole cocrystal polymorphs with gallic and gentisic acid accessed through slurry, atomization techniques, and thermal methods. Crystal Growth & Design, 23(11), 8241-8260.https://doi.org/10.1021/acs.cgd.3c00951
Ferdiansyah, R., Ardiansyah, S. A., Rachmaniar, R., & Yuniar, I. (2021). Pengaruh pembentukan kokristal menggunakan koformer asam karboksilat dengan metode solvent evaporation dan solvent drop grinding terhadap bioavailabilitas zat aktif. [The effect of cocrystal formation using carboxylic acid coformer with solvent evaporation and solvent drop grinding methods on the bioavailability of active substances.] Jurnal Ilmiah Farmako Bahari, 12(1), 28-38.https://doi.org/10.52434/jfb.v12i1.987
Jia, Z., Li, J., Gao, L., Yang, D., & Kanaev, A. (2023). Dynamic light scattering: a powerful tool for in situ nanoparticle sizing. Colloids and Interfaces, 7(1), 15.https://doi.org/10.3390/colloids7010015
Karthammaiah, G. N., Venkataramanan, N. S., & Solomon, K. A. (2025). Synthesis, characterization, computational studies and biological activity of gallic acid-picolinic acid cocrystal salt hydrate. Journal of Molecular Structure, 1336, 142056.https://doi.org/10.1016/j.molstruc.2025.142056
Li, C., Zhang, C., Yan, Y., Liang, W., Xu, J., & Chen, W. (2023). Multicomponent crystals of clozapine with improved solubility: a combined theoretical and experimental strategy on coformer screening and structure–property. Crystal Growth & Design, 23(10), 7295-7315.https://doi.org/10.1021/acs.cgd.3c00683
Nechipadappu, S. K., & Balasubramanian, S. (2023). Solid-state versatility in tranexamic acid drug: structural and thermal behavior of new salts and cocrystals. Structural Science, 79(1), 78-97.http://dx.doi.org/10.1107/S2052520622011969
Purwanto, A., Muthaharah, M., & Andika, A. (2024). Peningkatan kelarutan dan laju disolusi gliklazid dengan polimer Silika Mikrosfer (Sm).[Enhancement of solubility and dissolution rate of gliclazide with Silica Microsphere (SM) polymer] Jurnal Ilmiah Farmako Bahari, 15(1), 49-60.https://journal.uniga.ac.id/index.php/JFB/article/view/3109
Singh, M., Barua, H., Jyothi, V. G. S., Dhondale, M. R., Nambiar, A. G., Agrawal, A. K., ... & Kumar, D. (2023). Cocrystals by design: A rational coformer selection approach for tackling the API problems. Pharmaceutics, 15(4),1161.https://doi.org/10.3390/pharmaceutics15041161
Torquetti, C., Ferreira, P. O., de Almeida, A. C., Fernandes, R. P., & Caires, F. J. (2022). Thermal study and characterization of new cocrystals of ciprofloxacin with picolinic acid. Journal of Thermal Analysis and Calorimetry, 147(2), 1299-1306. http://dx.doi.org/10.1007/s10973-020-10479-3
Xiong, J., Xu, D., Zhang, H., Shi, Y., Wu, X., & Wang, S. (2024). Improving the Solubility and Bioavailability of Progesterone Cocrystals with Selected Carboxylic Acids. Pharmaceutics, 16(6), 816. https://doi.org/10.3390/pharmaceutics16060816
Yang, S., Liu, Q., Ji, W., An, Q., Song, J., Xing, C., ... & Du, G. (2022). Cocrystals of praziquantel with phenolic acids: discovery, characterization, and evaluation. Molecules, 27(6), 2022.https://doi.org/10.3390/molecules27062022
Zhou, J., Li, L., Zhang, H., Xu, J., Huang, D., Gong, N., ... & Zhou, Z. (2020). Crystal structures, dissolution and pharmacokinetic study on a novel phosphodiesterase-4 inhibitor chlorbipram cocrystals. International Journal of Pharmaceutics, 576, 118984.https://doi.org/10.1016/j.ijpharm.2019.118984
Statistics
97 Views | 61 Downloads
How to Cite
Purwanto, A., Yanti, A., Insani, Y., Nisa, N., Jariyah, A., & Wijaya, H. (2025). Enhancing Ezetimibe Absorption: Formation and Characterization of Drug Cocrystals with Carboxylic Acid Coformers. International Journal of Advancement in Life Sciences Research, 8(3), 73-82. https://doi.org/https://doi.org/10.31632/ijalsr.2025.v08i03.006