Mechanisms of Adaptation Pathogenicity and Resistance in Candida glabrata

Abstract

Candida glabrata has emerged as a significant opportunistic fungal pathogen, ranking as the second most common cause of candidiasis globally. Its increasing prevalence is attributed to the rise in immunocompromised populations, frequent use of indwelling medical devices, and its ability to develop resistance to antifungal drugs. C. glabrata exhibits unique adaptation strategies, including genetic diversity and plasticity, metabolic flexibility, stress response mechanisms, and biofilm formation. Its pathogenicity is characterised by adhesion factors, invasion strategies, evasion of host immune responses, and virulence factors. Notably, C. glabrata exhibits high intrinsic resistance to antifungal drugs, particularly azoles, and can rapidly acquire resistance to multiple classes of drugs. The molecular basis of drug resistance involves efflux pumps, target alterations, and mutator phenotypes caused by mismatch repair defects. Biofilm-associated resistance contributes to persistence and low therapeutic response. Diagnosing C. glabrata infections presents challenges due to its ability to evade host immune responses and the limitations of phenotypic susceptibility testing. Current treatment strategies involve antifungal therapies, combination therapies, and exploration of novel therapeutic targets. Understanding the complex interplay among C. glabrata virulence mechanisms, drug resistance, and host immune responses is crucial for developing effective management strategies and combating this emerging pathogen.

Keywords: Antifungal resistance, Biofilm formation, Candida glabrata, Stress Adaptation, Virulence Factors

Downloads

Download data is not yet available.

References

Adam, R. Z., & Khan, S. B. (2021). Antimicrobial efficacy of silver nanoparticles against Candida albicans: A systematic review. PLoS One, 16(1), e0245811. https://doi.org/10.1371/journal.pone.0245811
Aldejohann, A. M., Wiese-Posselt, M., Gastmeier, P., & Kurzai, O. (2022). Expert recommendations for prevention and management of Candida auris transmission. Mycoses, 65(6), 590–598. https://doi.org/10.1111/myc.13445
Alves, R., Precioso, J., & Becoña, E. (2021). llicit drug use among college students: The importance of knowledge about drugs, live at home and peer influence. Journal of psychoactive drugs, 53(4), 329-338. https://doi.org/10.1080/02791072.2020.1865592
Arastehfar, A., Daneshnia, F., Cabrera, N., Penalva-Lopez, S., Sarathy, J., Zimmerman, M., ... & Perlin, D. S. (2023). Macrophage internalization creates a multidrug-tolerant fungal persister reservoir and facilitates the emergence of drug resistance. Nature Communications, 14(1), 1183. https://doi.org/10.1038/s41467-023-36882-6
Arendrup, M. C., & Patterson, T. F. (2017). Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. The Journal of Infectious Diseases, 216(suppl_3), S445-S451. https://doi.org/10.1093/infdis/jix131
Babady, N. E., Miranda, E., & Gilhuley, K. A. (2011). Evaluation of Luminex xTAG fungal analyte-specific reagents for rapid identification of clinically relevant fungi. Journal of Clinical Microbiology, 49(11), 3777-3782. https://doi.org/10.1128/jcm.01135-11
Barac, A., Cevik, M., Colovic, N., Lekovic, D., Stevanovic, G., Micic, J., & Rubino, S. (2020). Investigation of a healthcare-associated Candida tropicalis candidiasis cluster in a haematology unit. Mycoses, 63(4), 326–333. https://doi.org/10.1111/myc.13048
Boonsilp, S., Homkaew, A., Phumisantiphong, U., Nutalai, D., & Wongsuk, T. (2021). Species distribution, antifungal susceptibility, and molecular epidemiology of Candida species causing candidemia in a tertiary care hospital in Bangkok, Thailand. Journal of Fungi, 7(7), 577. https://doi.org/10.3390/jof7070577
Borghi, E., Borgo, F., & Morace, G. (2016). Fungal biofilms: Update on resistance. Advances in Experimental Medicine and Biology, 931, 37– 47. https://doi.org/10.1007/5584_2016_7
Brown, A. J. P., Brown, G. D., Netea, M. G., & Gow, N. A. R. (2014). Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends in Microbiology, 22(11), 614–622. https://doi.org/10.1016/j.tim.2014.07.001
Camacho-Cardoso, J. L., Martínez-Rivera, M. Á., Manzano-Gayosso, P., Méndez-Tovar, L. J., López-Martínez, R., & Hernández-Hernández, F. (2017). Molecular detection of Candida species from hospitalized patient's specimens. Gac Med Mex, 153(5), 581-589. https://doi.org/10.24875/gmm.17002535
Carreté, L., Ksiezopolska, E., Gómez-Molero, E., Angoulvant, A., Bader, O., Fairhead, C., & Gabaldón, T. (2019). Genome comparisons of Candida glabrata serial clinical isolates reveal patterns of genetic variation in infecting clonal populations. Frontiers in Microbiology, 10, 112. https://doi.org/10.3389/fmicb.2019.00112
Cavalheiro, M., & Teixeira, M. C. (2018). Candida biofilms: threats, challenges, and promising strategies. Frontiers in Medicine, 5, 28. https://doi.org/10.3389/fmed.2018.00028
Chew, S. Y., Chee, W. J. Y., & Than, L. T. L. (2019). The glyoxylate cycle and alternative carbon metabolism as metabolic adaptation strategies of Candida glabrata: perspectives from Candida albicans and Saccharomyces cerevisiae. Journal of Biomedical Science, 26, 1-10. https://doi.org/10.1186/s12929-019-0546-5
Chew, V., Lee, Y. H., Pan, L., Nasir, N. J., Lim, C. J., Chua, C., ... & Chow, P. K. (2019). Immune activation underlies a sustained clinical response to Yttrium-90 radioembolisation in hepatocellular carcinoma. Gut, 68(2), 335-346. https://doi.org/10.1136/gutjnl-2017-315485
Cormack, B. P., Ghori, N., & Falkow, S. (1999). An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science, 285(5427), 578-582. https://doi.org/10.1126/science.285.5427.578
Cornet, M., Sendid, B., Fradin, C., Gaillardin, C., Poulain, D., & Nguyen, H. V. (2011). Molecular identification of closely related Candida species using two ribosomal intergenic spacer fingerprinting methods. The Journal of Molecular Diagnostics, 13(1), 12-22. https://doi.org/10.1016/j.jmoldx.2010.11.014
Costa-de-Oliveira, S., & Rodrigues, A. G. (2020). Candida albicans antifungal resistance and tolerance in bloodstream infections: The triad yeast-host-antifungal. Microorganisms, 8(2), 154. https://doi.org/10.3390/microorganisms8020154
Criseo, G., Scordino, F., & Romeo, O. (2015). Current methods for identifying clinically important cryptic Candida species. Journal of Microbiological Methods, 111, 50–56. https://doi.org/10.1016/j.mimet.2015.02.004
Cuéllar-Cruz, M., Briones-Martin-del-Campo, M., Canas-Villamar, I., Montalvo-Arredondo, J., Riego-Ruiz, L., Castano, I., & De Las Penas, A. (2008). High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryotic Cell, 7(5), 814-825. https://doi.org/10.1128/ec.00011-08
Czajka, K. M., Venkataraman, K., Brabant-Kirwan, D., Santi, S. A., Verschoor, C., Appanna, V. D., ... & Tharmalingam, S. (2023). Molecular mechanisms associated with antifungal resistance in pathogenic Candida species. Cells, 12(22), 2655. https://doi.org/10.3390/cells12222655
Dagi, H. T., Findik, D., Senkeles, C., & Arslan, U. (2016). Identification and antifungal susceptibility of Candida species isolated from bloodstream infections in Konya, Turkey. Annals of Clinical Microbiology and Antimicrobials, 15, 1-5. https://doi.org/10.1186/s12941-016-0153-1
d'Enfert, C., & Janbon, G. (2016). Biofilm formation in Candida glabrata: What have we learnt from functional genomics approaches?. FEMS Yeast Research, 16(1), fov111. https://doi.org/10.1093/femsyr/fov111
d'Enfert, C., Kaune, A. K., Alaban, L. R., Chakraborty, S., Cole, N., Delavy, M., ... & Brown, A. J. (2021). The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiology Reviews, 45(3), fuaa060. https://doi.org/10.1093/femsre/fuaa060
Dominguez, E. G., Zarnowski, R., Choy, H. L., Zhao, M., Sanchez, H., Nett, J. E., & Andes, D. R. (2019). Conserved role for biofilm matrix polysaccharides in Candida auris drug resistance. MSphere, 4(1), e00680-18. https://doi.org/10.1128/mspheredirect.00680-18
Eliaš, D., & Gbelská, Y. (2022). Candida glabrata-basic characteristics, virulence, treatment, and resistance. Epidemiologie, Mikrobiologie, Imunologie: Casopis Spolecnosti pro Epidemiologii a Mikrobiologii Ceske Lekarske Spolecnosti JE Purkyne, 71(2), 118-134.
Essendoubi, M., Gobinet, C., Reynaud, R., Angiboust, J. F., Manfait, M., & Piot, O. J. S. R. (2016). Human skin penetration of hyaluronic acid of different molecular weights as probed by Raman spectroscopy. Skin Research and Technology, 22(1), 55-62. https://doi.org/10.1111/srt.12228
Frías-De-León, M. G., Hernández-Castro, R., Conde-Cuevas, E., García-Coronel, I. H., Vázquez-Aceituno, V. A., Soriano-Ursúa, M. A., ... & Martínez-Herrera, E. (2021). Candida glabrata antifungal resistance and virulence factors, a perfect pathogenic combination. Pharmaceutics, 13(10), 1529. https://doi.org/10.3390/pharmaceutics13101529
Gamal, A., Chu, S., McCormick, T. S., Borroto-Esoda, K., Angulo, D., & Ghannoum, M. A. (2021). Ibrexafungerp, a novel oral triterpenoid antifungal in development: overview of antifungal activity against Candida glabrata. Frontiers in Cellular and Infection Microbiology, 11, 642358. https://doi.org/10.3389/fcimb.2021.642358
Giri, S., Kindo, A. J., & Kalyani, J. (2014). Fatal case of candidemia due to Candida glabrata. Journal of Laboratory Physicians, 6(1), 63–64. https://doi.org/10.4103/0974-2727.129098
Gupta, P., Gupta, H., & Poluri, K. M. (2021). Geraniol eradicates Candida glabrata biofilm by targeting multiple cellular pathways. Applied Microbiology and Biotechnology, 105(13), 5589–5605. https://doi.org/10.1007/s00253-021-11397-6
Gutiérrez-Escobedo, G., Hernández-Carreón, O., Morales-Rojano, B., Revuelta-Rodríguez, B., Vázquez-Franco, N., Castaño, I., & De Las Peñas , A. (2020). Candida glabrata peroxiredoxins, Tsa1 and Tsa2, and sulfiredoxin, Srx1, protect against oxidative damage and are necessary for virulence. Fungal Genetics and Biology, 135, 103287. https://doi.org/10.1016/j.fgb.2019.103287
Halliday, C. L., Kidd, S. E., Sorrell, T. C., & Chen, S. C. (2015). Molecular diagnostic methods for invasive fungal disease: The horizon draws nearer? Pathology: Journal of the RCPA, 47(3), 257–269. https://doi.org/10.1097/pat.0000000000000234
Hassan, Y., Chew, S. Y., & Than, L. T. L. (2021). Candida glabrata: pathogenicity and resistance mechanisms for adaptation and survival. Journal of Fungi, 7(8), 667. https://doi.org/10.3390/jof7080667
Hato, H., Sakata, K. I., Sato, J., Hasebe, A., Yamazaki, Y., Kitagawa, Y. (2022). Factor associated with oral candidiasis caused by co-infection of Candida albicans and Candida Glabrata: A retrospective study. Journal of Dental Science, 17(3), 1458–1461. https://doi.org/10.1016/j.jds.2021.10.020
Healey, K. R., Zhao, Y., Perez, W. B., Lockhart, S. R., Sobel, J. D., Farmakiotis, D., ... & Perlin, D. S. (2016). Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance. Nature Communications, 7(1), 11128. https://doi.org/10.1038/ncomms11128
Hervay, N. T., Elias, D., Habova, M., Jacko, J., Morvova, M., & Gbelska, Y. (2023). Catechin potentiates the antifungal effect of miconazole in Candida glabrata. Folia Microbiologica, 68(6), 835–842. https://doi.org/10.1007/s12223-023-01061-z
Ho, H. L., & Haynes, K. (2015). Candida glabrata: New tools and technologies—expanding the toolkit. FEMS Yeast Research, 15(6), fov066. https://doi.org/10.1093/femsyr/fov066
Hu, C., Fong, G., Kontoyiannis, D. P., Wurster, S., & Beyda, N. D. (2022). Clumping morphology influences virulence uncoupled from echinocandin resistance in Candida glabrata. Microbiology Spectrum, 10(1), e01837-21. https://doi.org/10.1128/spectrum.01837-21
Ifrim, D. C., Bain, J. M., Reid, D. M., Oosting, M., Verschueren, I., Gow, N. A., ... & Netea, M. G. (2014). Role of Dectin-2 for host defense against systemic infection with Candida glabrata. Infection and Immunity, 82(3), 1064-1073. https://doi.org/10.1128/iai.01189-13
Jiménez-López, C., & Lorenz, M. C. (2013). Fungal immune evasion in a model host–pathogen interaction: Candida albicans versus macrophages. PLoS Pathogens, 9(11), e1003741. https://doi.org/10.1371/journal.ppat.1003741
Kasper, L., Seider, K., & Hube, B. (2015). Intracellular survival of Candida glabrata in macrophages: Immune evasion and persistence. FEMS Yeast Research, 15(5), fov042. https://doi.org/10.1093/femsyr/fov042
Katragkou, A., Myint, K., Meletiadis, J., Roilides, E., Hussain, K., Zaw, M., Moradi, P., McCarthy, M., Kovanda, L., Walsh, T., Petraitienė, R., Strauss, G., & Petraitis, V. (2017). In vitro combination therapy with isavuconazole against Candida spp. Medical Mycology, 55(8), 859-868. https://doi.org/10.1093/mmy/myx006
Katsipoulaki, M., Stappers, M. H., Malavia-Jones, D., Brunke, S., Hube, B., & Gow, N. A. (2024). Candida albicans and Candida glabrata: Global priority pathogens. Microbiology and Molecular Biology Reviews, 88(2), e00021-23. https://doi.org/10.1128/mmbr.00021-23
Kumar, K., Kaur, R., Sahu, M. S., & Askari, F. (2019). Candida glabrata: A lot more than meets the eye. Microorganisms, 7(2), 39. https://doi.org/10.3390/microorganisms7020039
Lee, Y., Robbins, N., & Cowen, L. E. (2023). Molecular mechanisms governing antifungal drug resistance. npj Antimicrobials and Resistance, 1(1), 5. https://doi.org/10.1038/s44259-023-00007-2
Lewis, R. E., Viale, P., & Kontoyiannis, D. P. (2012). The potential impact of antifungal drug resistance mechanisms on the host immune response to Candida. Virulence, 3(4), 368-376. https://doi.org/10.4161/viru.20746
Lin, M. Y., Carmeli, Y., Zumsteg, J., Flores, E. L., Tolentino, J., Sreeramoju, P., & Weber, S. G. (2005). Prior antimicrobial therapy and risk for hospital-acquired Candida glabrata and Candida krusei fungemia: A case-case-control study. Antimicrobial Agents and Chemotherapy, 49(11), 4555–4560. https://doi.org/10.1128/AAC.49.11.4555-4560.2005
Lott, T. J., Frade, J. P., & Lockhart, S. R. (2010). Multilocus sequence type analysis reveals both clonality and recombination in populations of Candida glabrata bloodstream isolates. Eukaryotic Cell, 9(4), 619–625. https://doi.org/10.1128/EC.00002-10
Mba, I. E., Nweze, E. I., Eze, E. A., & Anyaegbunam, Z. K. G. (2022). Genome plasticity in Candida albicans: A cutting-edge strategy for evolution, adaptation, and survival. Infection, Genetics and Evolution, 99, 105256. https://doi.org/10.1016/j.meegid.2022.105256
Montravers, P., Mira, J. P., Gangneux, J. P., Leroy, O., Lortholary, O., & Amar Cand Study Group. (2011). A multicentre study of antifungal strategies and outcome of Candida spp. peritonitis in intensive-care units. Clinical Microbiology and Infection, 17(7), 1061–1067. https://doi.org/10.1111/j.1469-0691.2010.03360.x
Morschhäuser, J. (2009). Regulation of multidrug resistance in pathogenic fungi. Fungal Genetics and Biology, 47(2), 94–106. https://doi.org/10.1016/j.fgb.2009.08.002
Nene, S., Shah, S., Rangaraj, N., Mehra, N. K., Singh, P. K., & Srivastava, S. (2021). Lipid-based nanocarriers: A novel paradigm for topical antifungal therapy. Journal of Drug Delivery Science and Technology, 62, 102397. https://doi.org/10.1016/j.jddst.2021.102397
Padder, S. A., Ramzan, A., Tahir, I., Rehman, R. U., & Shah, A. H. (2022). Metabolic flexibility and extensive adaptability governing multiple drug resistance and enhanced virulence in Candida albicans. Critical Reviews in Microbiology, 48(1), 1-20. https://doi.org/10.1080/1040841x.2021.1935447
Pais, P., Califórnia, R., Galocha, M., Viana, R., Ola, M., Cavalheiro, M., Takahashi-Nakaguchi, A., Chibana, H., Butler, G., & Teixeira, M. C. (2020). Candida glabrata transcription factor Rpn4 mediates fluconazole resistance through regulation of ergosterol biosynthesis and plasma membrane permeability. Antimicrobial Agents and Chemotherapy, 64(9), e00554-20. https://doi.org/10.1128/aac.00554-20
Parkinson, T., Hitchcock, C. A., & Falconer, D. J. (1995). Fluconazole resistance due to energy-dependent drug efflux in Candida glabrata. Antimicrobial Agents and Chemotherapy, 39(8), 1696–1699. https://doi.org/10.1128/aac.39.8.1696
Pemán, J., Cantón, E., & Espinel-Ingroff, A. (2009). Antifungal drug resistance mechanisms. Expert Review of Anti-Infective Therapy, 7(4), 453-460. https://doi.org/10.1586/eri.09.18
Perez-Lopez, R., Ghaffari Laleh, N., Mahmood, F., & Kather, J. N. (2024). A guide to artificial intelligence for cancer researchers. Nature Reviews Cancer, 24(6), 427–441. https://doi.org/10.1038/s41568-024-00694-7
Pukkila-Worley, R., Peleg, A. Y., Tampakakis, E., & Mylonakis, E. (2009). Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Eukaryotic Cell, 8(11), 1750-1758. https://doi.org/10.1128/EC.00163-09
Rajendran, R., Sherry, L., Deshpande, A., Johnson, E. M., Hanson, M. F., Williams, C., Munro, C. A., Jones, B. L., Ramage, G. (2016). A prospective surveillance study of candidemia: Epidemiology, risk factors, antifungal treatment, and outcome in hospitalized patients. Frontiers in Microbiology, 7, 915. https://doi.org/10.3389/fmicb.2016.00915
Rasheed, M., Battu, A., & Kaur, R. (2020). Host–pathogen interaction in Candida glabrata infection: current knowledge and implications for antifungal therapy. Expert Review of Anti-infective Therapy, 18(11), 1093-1103. https://doi.org/10.1080/14787210.2020.1792773
Richardson, M. D. (2005). Changing patterns and trends in systemic fungal infections. Journal of Antimicrobial Chemotherapy, 56(Suppl 1), i5–i11. https://doi.org/10.1093/jac/dki218
Rodrigues, C. F., Silva, S., & Henriques, M. (2014). Candida glabrata: A review of its features and resistance. European Journal of Clinical Microbiology & Infectious Diseases, 33, 673-688. https://doi.org/10.1007/s10096-013-2009-3
Roetzer, A., Gabaldón, T., & Schüller, C. (2011). From Saccharomyces cerevisiae to Candida glabrata in a few easy steps: Important adaptations for an opportunistic pathogen. FEMS Microbiology Letters, 314(1), 1–9. https://doi.org/10.1111/j.1574-6968.2010.02102.x
Santos, R., Ursu, O., Gaulton, A., Bento, A. P., Donadi, R. S., Bologa, C. G., ... & Overington, J. P. (2017). A comprehensive map of molecular drug targets. Nature Reviews Drug Discovery, 16(1), 19-34. https://doi.org/10.1038/nrd.2016.230
Schmalreck, A. F., Willinger, B., Haase, G., Blum, G., Lass‐Flörl, C., Fegeler, W., ... & Antifungal Susceptibility Testing (AFST) Study Group. (2012). Species and susceptibility distribution of 1062 clinical yeast isolates to azoles, echinocandins, flucytosine and amphotericin B from a multi‐centre study. Mycoses, 55(3), e124-e137. https://doi.org/10.1111/j.1439-0507.2011.02165.x
Schwarzmueller, T., Ma, B., Hiller, E., Istel, F., Tscherner, M., Brunke, S., ... & Kuchler, K. (2014). Systematic phenotyping of a large-scale Candida glabrata deletion collection reveals novel antifungal tolerance genes. PLoS Pathogens, 10(6), e1004211. https://doi.org/10.1371/journal.ppat.1004211
Seider, K., Gerwien, F., Kasper, L., Allert, S., Brunke, S., Jablonowski, N., ... & Hube, B. (2014). Immune evasion, stress resistance, and efficient nutrient acquisition are crucial for intracellular survival of Candida glabrata within macrophages. Eukaryotic Cell, 13(1), 170-183. https://doi.org/10.1128/ec.00262-13
Seneviratne, C., Jin, L., & Samaranayake, L. (2008). Biofilm lifestyle of Candida: A mini review. Oral Diseases, 14(7), 582–590. https://doi.org/10.1111/j.1601-0825.2007.01424.x
Timmermans, B., De Las Peñas, A., Castaño, I., & Van Dijck, P. (2018). Adhesins in Candida glabrata. Journal of Fungi, 4(2). https://doi.org/10.3390/jof4020060
Tortorano, A. M., Dho, G., Prigitano, A., Breda, G., Grancini, A., Emmi, V., ... & ECMM‐FIMUA Study Group. (2012). Invasive fungal infections in the intensive care unit: A multicentre, prospective, observational study in Italy (2006–2008). Mycoses, 55(1), 73-79. https://doi.org/10.1111/j.1439-0507.2011.02044.x
Tscherner, M., Schwarzmüller, T., & Kuchler, K. (2011). Pathogenesis and antifungal drug resistance of the human fungal pathogen Candida glabrata. Pharmaceuticals, 4(1), 169-186. https://doi.org/10.3390/ph4010169
Turner, S. A., & Butler, G. (2014). The Candida pathogenic species complex. Cold Spring Harbor Perspectives in Medicine, 4(9), e1004211. https://doi.org/10.1101/cshperspect.a019778
Vale-Silva, L., Ischer, F., Leibundgut-Landmann, S., & Sanglard, D. (2013). Gain-of-function mutations in PDR1, a regulator of antifungal drug resistance in Candida glabrata, control adherence to host cells. Infection and Immunity, 81(5), 1709-1720. https://doi.org/10.1128/iai.00074-13
Vazquez, J. A., Dembry, L. M., Sobel, J. D., Zervos, M. J., Vazquez, M. A., Sanchez, V., & Dmuchowski, C. (1998). Nosocomial Candida glabrata colonization: An epidemiologic study. Journal of Clinical Microbiology, 36(2), 421–426. https://doi.org/10.1128/jcm.36.2.421-426.1998
Vella, A., De Carolis, E., Mello, E., Perlin, D. S., Sanglard, D., Sanguinetti, M., & Posteraro, B. (2017). Potential use of MALDI-ToF mass spectrometry for rapid detection of antifungal resistance in the human pathogen Candida glabrata. Scientific Reports, 7(1), 9099. https://doi.org/10.1038/s41598-017-09329-4
Vincent, B. M., Langlois, J. B., Srinivas, R., Lancaster, A. K., Scherz-Shouval, R., Whitesell, L., ... & Lindquist, S. (2016). A fungal-selective cytochrome bc1 inhibitor impairs virulence and prevents the evolution of drug resistance. Cell Chemical Biology, 23(8), 978-991. https://doi.org/10.1016/j.chembiol.2016.06.016
Weinberger, M., Leibovici, L., Perez, S., Samra, Z., Ostfeld, I., Levi, I., ... & Keller, N. (2005). Characteristics of candidaemia with Candida-albicans compared with non-albicans Candida species and predictors of mortality. Journal of Hospital Infection, 61(2), 146-154. https://doi.org/10.1016/j.jhin.2005.02.009
Whaley, S. G., & Rogers, P. D. (2016). Azole resistance in Candida glabrata. Current Infectious Disease Reports, 18, 1-10. https://doi.org/10.1007/s11908-016-0554-5
Zervou, F. N., Zacharioudakis, I. M., Kurpewski, J., & Mylonakis, E. (2016). T2 magnetic resonance for fungal diagnosis. In Human Fungal Pathogen Identification: Methods and Protocols (pp. 305-319). Springer New York. https://doi.org/10.1007/978-1-4939-6515-1_18
Zhang, J., Hung, G. C., Nagamine, K., Li, B., Tsai, S., & Lo, S. C. (2016). Development of Candida-specific real-time PCR assays for the detection and identification of eight medically important Candida species. Microbiology Insights, 9, 21–28. https://doi.org/10.4137/mbi.s38517
Zhao, Y., Nagasaki, Y., Kordalewska, M., Press, E. G., Shields, R. K., Nguyen, M. H., ... & Perlin, D. S.(2016). Rapid detection of FKS-associated echinocandin resistance in Candida glabrata. Antimicrobial Agents and Chemotherapy, 60(11), 6573-6577. https://doi.org/10.1128/aac.01574-16
Statistics
112 Views | 77 Downloads
How to Cite
Subhadarsini, S., Purohit, G., & Mishra, M. (2025). Mechanisms of Adaptation Pathogenicity and Resistance in Candida glabrata. International Journal of Advancement in Life Sciences Research, 8(3), 16-32. https://doi.org/https://doi.org/10.31632/ijalsr.2025.v08i03.002