Quantitative GC-MS and HPLC Profiling of n-hexane and Methanol Extracts from Curcuma zedoaria Leaves for Biomedical Applications

  • Abdulmutalib Allaq Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia https://orcid.org/0000-0003-2031-8780
  • Fatimah Salim ¹Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia ²Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Puncak Alam, Selangor, Malaysia https://orcid.org/0000-0001-9560-068X
  • Muneer Alsayadi Department of Food Science and Technology, Faculty of Agriculture, Ibb University, Aldhehar, 70270, Ibb, Yemen https://orcid.org/0000-0002-6892-0765
  • Norrizah Jaafar Sidik Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia https://orcid.org/0000-0002-8965-0821

Abstract

Curcuma zedoaria (Zingiberaceae), locally known as Temu putih or Kunyit putih, is widely used in Malaysia as a spice, flavouring agent, and postpartum remedy, often in combination with other medicinal plants. However, limited studies have explored the phytochemical composition of C. zedoaria leaves, particularly using extracts of varying polarities, despite the importance of this approach in capturing the full spectrum of bioactive compounds. HPLC analysis facilitated the detection of 18 polar constituents, notably flavonoids and coumarins, which are recognised for their therapeutic potential. In parallel, GC-MS profiling identified a broad spectrum of secondary metabolites, with the n-hexane extract yielding 37 compounds. In contrast, the methanol extract revealed 22 distinct peaks by GC-MS, reflecting a diverse range of phenolic derivatives and oxygenated diterpenes. Comparative results indicated distinct phytochemical patterns influenced by solvent polarity. These findings suggest that C. zedoaria leaves, often overlooked in favour of rhizomes, represent a substantial source of pharmacologically relevant compounds. This research contributes to expanding the phytochemical knowledge of the species and supports the valorisation of foliar biomass in pharmaceutical and industrial applications.

Keywords: Curcuma zedoaria, GC-MS, HPLC

Downloads

Download data is not yet available.

References

Abd Ghafar, S. Z., Mediani, A., Ramli, N. S., & Abas, F. (2018). Antioxidant, α-glucosidase, and nitric oxide inhibitory activities of Phyllanthus acidus and LC–MS/MS profile of the active extract. Food Bioscience, 25, 134–140. https://doi.org/10.1016/j.fbio.2018.08.009
Abdulsamad, M. A., Saad, N. R., Salhi, M. A., Allaq, A. A., Badi, A., & Tendulkar, A. (2024). Antimicrobial susceptibility profiles of Staphylococcus aureus, Streptococcus pyogenes and Bacillus subtilis to various antibiotics. International Journal of Advancement in Life Sciences Research, 7(3), 140–151. https://doi.org/10.31632/ijalsr.2024.v07i03.013
Aggarwal, B. B., Yuan, W., Li, S., & Gupta, S. C. (2013). Curcumin‐free turmeric exhibits anti‐inflammatory and anticancer activities: Identification of novel components of turmeric. Molecular Nutrition & Food Research, 57(9), 1529–1542. https://doi.org/10.1002/mnfr.201200838
Ahmed Hamdi, O. A., Syed Abdul Rahman, S. N., Awang, K., Abdul Wahab, N., Looi, C. Y., Thomas, N. F., & Abd Malek, S. N. (2014). Cytotoxic constituents from the rhizomes of Curcuma zedoaria. The Scientific World Journal, 2014, 321943. https://doi.org/10.1155/2014/321943
Al Saqr, A., Khafagy, E. S., Aldawsari, M. F., Almansour, K., & Abu Lila, A. S. (2022). Screening of apoptosis pathway-mediated anti-proliferative activity of the phytochemical compound furanodienone against human non-small lung cancer A-549 cells. Life, 12(1), 114.https://doi.org/10.3390/life12010114
Albaqami, J. J., Hamdi, H., Narayanankutty, A., Visakh, N. U., Sasidharan, A., Kuttithodi, A. M., ... & Pathrose, B. (2022). Chemical composition and biological activities of the leaf essential oils of Curcuma longa, Curcuma aromatica and Curcuma angustifolia. Antibiotics, 11(11), 1547. https://doi.org/10.3390/antibiotics11111547
Alencar, M. V., Islam, M. T., Ali, E. S., Santos, J. V., Paz, M. F., Sousa, J. M., ... & Cavalcante, A. A. (2018). Association of phytol with toxic and cytotoxic activities in an antitumoral perspective: a meta-analysis and systemic review. Anti-Cancer Agents in Medicinal Chemistry-Anti-Cancer Agents), 18(13), 1828-1837. https://doi.org/10.2174/1871520618666180821113830
Allabaksh, S., & Senthilraj, R. (2024). A quantitative HPLC analysis of phytoconstituents and assessment of antioxidant properties of the rhizome of Curcuma angustifolia ROXB. Rasayan Journal of Chemistry, 17(2), 588-597.https://doi.org/10.31788/RJC.2024.1728798
Allaq, A. A., Aziz, A. A., Salim, F., & Sidik, N. J. (2025). An overview of the phytochemical pharmacology and potential biomaterials of Curcuma aeruginosa Roxb. against COVID 19. Current Materials Science, 18. https://doi.org/10.2174/0126661454336697250205160913
Allaq, A. A., Sidik, N. J., Abdul-Aziz, A., & Ahmed, I. A. (2021). Antioxidant, antibacterial, and phytochemical screening of ethanolic crude extracts of Libyan Peganum harmala seeds. Journal of Pharmaceutical Research International, 33(13), 74–82. https://doi.org/10.9734/jpri/2021/v33i1331268
Alves dos Santos, P. N., Braga Andrade, Y., Moraes Santana, A. A., Cordeiro Cardoso, J., dos Santos Polidoro, A., Loreiro dos Santos, A., & Bastos Caramão, E. (2025). Characterization of volatile compounds in Eugenia uniflora L. essential oil by GC×GC/TOFMS: Exploring its antioxidant potential and in vitro ocular irritation assessment. Journal of Essential Oil Research, 37(1), 56–64. https://doi.org/10.1080/10412905.2024.2447713
Ang, L. F., Yam, M. F., Fung, Y. T. T., Kiang, P. K., & Darwin, Y. (2014). HPLC method for simultaneous quantitative detection of quercetin and curcuminoids in traditional Chinese medicines. Journal of Pharmacopuncture, 17(4), 36–49. https://doi.org/10.3831/KPI.2014.17.035
Arya, S., Kumar, R., Prakash, O., Latwal, M., Pandey, G., Kumar, S., Srivastava, R. M., & Mali, S. N. (2024). Therapeutic bioactivities and chemical composition analysis of rhizome oleoresin of Hedychium coronarium collected from Uttarakhand, India. Combinatorial Chemistry & High Throughput Screening. https://doi.org/10.2174/0113862073327439241119113953
Babbar, N., Oberoi, H. S., Sandhu, S. K., & Bhargav, V. K. (2014). Influence of different solvents in extraction of phenolic compounds from vegetable residues and their evaluation as natural sources of antioxidants. Journal of Food Science and Technology, 51(10), 2568–2575. https://doi.org/10.1007/s13197-012-0754-4
Baghel, U. S., Nagar, A., Pannu, M. S., Singh, D., & Yadav, R. (2017). HPLC and HPTLC methods for simultaneous estimation of quercetin and curcumin in polyherbal formulation. Indian Journal of Pharmaceutical Sciences, 79(2), 197–203. https://doi.org/10.4172/pharmaceutical-sciences.1000217
Bai, Z., Yao, C., Zhu, J., Xie, Y., Ye, X.-Y., Bai, R., & Xie, T. (2021). Anti-tumor drug discovery based on natural product β-elemene: Anti-tumor mechanisms and structural modification. Molecules, 26(6), 1499. https://doi.org/10.3390/molecules26061499
Can, H., Güven, L., Demirkaya Miloğlu, F., & Abd El-Aty, A. M. (2024). Development and validation of a UHPLC-ESI-MS/MS method for the simultaneous determination of organic acids and phenolic compounds in Filipendula vulgaris, Polygonum divaricatum, Hypericum linarioides, and Rheum ribes. Microchemical Journal, 201, 110683. https://doi.org/10.1016/j.microc.2024.110683
Chen, X., Huang, C., Li, K., Liu, J., Zheng, Y., Feng, Y., & Kai, G. (2023). Recent advances in biosynthesis and pharmacology of β-elemene. Phytochemistry Reviews, 22(1), 169–186. https://doi.org/10.1007/s11101-022-09833-0
Dosoky, N. S., & Setzer, W. N. (2018). Chemical composition and biological activities of essential oils of Curcuma species. Nutrients, 10(9). https://doi.org/10.3390/nu10091196
Farina, N., Llewellyn, D., Isaac, M. G. E. K. N., & Tabet, N. (2017). Vitamin E for Alzheimer's dementia and mild cognitive impairment. The Cochrane Database of Systematic Reviews, 4(4). https://doi.org/10.1002/14651858.cd002854.pub5
Geethanjali, S., Krishnan, V., Uma, M. T., & Aravindarajan, S. T. M. (2024). Phytochemical profile of onion (Allium cepa var. aggregatum): Comparative study of TNAU varieties with a local indigenous. The Indian Journal of Agricultural Sciences, 94(3), 263–269. https://doi.org/10.56093/ijas.v94i3.135587
Hamdi, O. A. A., Ye, L. J., Kamarudin, M. N. A., Hazni, H., Paydar, M., Shilpi, J. A., ... & Awang, K. (2015). Neuroprotective and antioxidant constituents from curcuma zedoaria rhizomes. Records of Natural Products, 9(3), 349-355. https://doi.org/10.5555/20153225835
Hroboňová, K., Lehotay, J., Čižmárik, J., & Sádecká, J. (2013). Comparison of HPLC and fluorescence spectrometry methods for determination of coumarin derivatives in propolis. Journal of Liquid Chromatography & Related Technologies, 36(4), 486–503. https://doi.org/10.1080/10826076.2012.660724
Laleff, K. A., Debib, A., Menadi, S., Alsayadi, M., Kaced, A., & Benrima, A. (2021). Phenolic content and antibacterial activity of cupressus sempervirens leaves extracts against phytopathogenic bacteria pectobacterium atrosepticum causative agent of soft rot on potato and clinical bacteria strains. Tropical Journal of Natural Product Research (TJNPR), 5(5), 866-872. https://doi.org/10.26538/tjnpr/v5i5.12
Ilijaš, M., Malnar, I., Gabelica Marković, V., & Stepanić, V. (2013). Study of lipophilicity and membrane partition of 4-hydroxycoumarins by HPLC and PCA. Journal of Pharmaceutical and Biomedical Analysis, 76, 104–111. https://doi.org/10.1016/j.jpba.2012.11.043
Kulyal, P., Acharya, S., Ankari, A. B., Kokkiripati, P. K., Tetali, S. D., & Raghavendra, A. S. (2021). Variable secondary metabolite profiles across cultivars of Curcuma longa L. and C. aromatica Salisb. Frontiers in Pharmacology, 12, 659546.https://doi.org/10.3389/fphar.2021.659546
Kumar, A., Sharma, P. P., Shukla, A., & Dubey, S. (2024). Phytochemistry, pharmacology and ethnomedicinal applications of Curcuma zedoaria (Christm.) Rosc. In Recent advances in chemical sciences. Weser Books.
Lee, J.-E., Jayakody, J., Kim, J.-I., Jeong, J.-W., Choi, K.-M., Kim, T.-S., Seo, C., Azimi, I., Hyun, J., & Ryu, B. (2024). The influence of solvent choice on the extraction of bioactive compounds from Asteraceae: A comparative review. Foods, 13(19), 3151.https://doi.org/10.3390/foods13193151
Liang, W., Guan, W., Chen, R., Wang, W., Li, J., Xu, K., Li, C., Ai, Q., Lu, W., Liang, H., Li, S., & He, J. (2020). Cancer patients in SARS-CoV-2 infection: A nationwide analysis in China. The Lancet Oncology, 21(3), 335–337. https://doi.org/10.1016/S1470-2045(20)30096-6
Machyňáková, A., & Hroboňová, K. (2017). Simultaneous determination of coumarin derivatives in natural samples by ultra high performance liquid chromatography. Journal of Food & Nutrition Research, 56(2), 179–188.
Malek, S. N., Abdullah, F., Ali, N. M., Ibrahim, H., & Jalil, M. N. (2004). Analysis of essential oil of Curcuma zedoaria. Journal of Tropical Medicinal Plants, 5(1), 29–32. https://doi.org/10.21315/jtmp2004.5.1.5
Mukherjee, P. K., Bahadur, S., Chaudhary, S. K., Kar, A., & Mukherjee, K. (2015). Quality related safety issue—Evidence-based validation of herbal medicine farm to pharma. In P. K. Mukherjee (Ed.), Evidence-based validation of herbal medicine (pp. 1–28). Elsevier. https://doi.org/10.1016/B978-0-12-800874-4.00001-5
Odeku, O. A., Ogunniyi, Q. A., Ogbole, O. O., & Fettke, J. (2024). Forgotten gems: Exploring the untapped benefits of underutilized legumes in agriculture, nutrition, and environmental sustainability. Plants, 13(9), 1208. https://doi.org/10.3390/plants13091208
Oreopoulou, A., Choulitoudi, E., Tsimogiannis, D., & Oreopoulou, V. (2021). Six common herbs with distinctive bioactive, antioxidant components: A review of their separation techniques. Molecules, 26(10), 2920. https://doi.org/10.3390/molecules26102920
Sukor, S., Zahari, Z., Rahim, N., Yusoff, J., & Salim, F. (2022). Chemical constituents and antiproliferative activity of Eleusine indica (L.) Gaertn. Sains Malaysiana, 51(3), 873–882. https://doi.org/10.17576/jsm-2022-5103-21
Patil, N., & Mahajan, H. (2022). Development and validation of RP-HPLC method for simultaneous qualitative and quantitative estimation of curcumin and quercetin in bulk mixture. Indian Journal of Pharmaceutical Education and Research, 56(1), 247–254. https://doi.org/10.5530/ijper.56.1.29
Poudel, D. K., Ojha, P. K., Rokaya, A., Satyal, R., Satyal, P., & Setzer, W. N. (2022). Analysis of volatile constituents in Curcuma species, viz. C. aeruginosa, C. zedoaria, and C. longa, from Nepal. Plants, 11(15), 1932. https://doi.org/10.3390/plants11151932
Rahaman, M. M., Rakib, A., Mitra, S., Tareq, A. M., Emran, T. B., Shahid-Ud-Daula, A. F. M., Amin, M. N., & Simal-Gandara, J. (2020). The genus Curcuma and inflammation: Overview of the pharmacological perspectives. Plants, 10(1), 63. https://doi.org/10.3390/plants10010063
Rana, P., Ganarajan, G., & Kothiyal, P. (2015). Review on the preparation and properties of the hydrogel formulation. World Journal of Pharmacy and Pharmaceutical Sciences, 4(12), 1069–1080. Available at: https://storage.googleapis.com/innctech/wjpps/article_issue/1449127501.pdf
Ribeiro, J., Silva, V., Igrejas, G., Barros, L., Heleno, S. A., Reis, F. S., & Poeta, P. (2025). Phenolic compounds from Pyrus communis residues: Mechanisms of antibacterial action and therapeutic applications. Antibiotics, 14(3), 280. https://doi.org/10.3390/antibiotics14030280
Rosa, G. P., Seca, A. M., Pinto, D. C., & Barreto, M. C. (2024). New phytol derivatives with increased cosmeceutical potential. Molecules, 29(20). https://doi.org/10.3390/molecules29204917
Schmölz, L., Birringer, M., Lorkowski, S., & Wallert, M. (2016). Complexity of vitamin E metabolism. World Journal of Biological Chemistry, 7(1), 14-43. https://doi.org/10.4331/wjbc.v7.i1.14
Scotter, M. J., Roberts, D. P. T., & Rees, G. O. (2011). Development and single-laboratory validation of an HPLC method for the determination of coumarin in foodstuffs using internal standardization and solid-phase extraction cleanup. Analytical Methods, 3(2), 414–419. https://doi.org/10.1039/C0AY00545B
Setyani, D. A., Rahayu, D. U. C., Handayani, S., & Sugita, P. (2020). Phytochemical and antiacne investigation of Indonesian white turmeric (Curcuma zedoaria) rhizomes. IOP Conference Series: Materials Science and Engineering, 902(1). https://doi.org/10.1088/1757-899X/902/1/012066
Sidik, N. J., Agha, H. M., Alkamil, A. A., Alsayadi, M. M. S., & Mohammed, A. A. (2024). A mini review of plant tissue culture: The role of media optimization, growth regulators in modern agriculture, callus induction and the applications. AUIQ Complementary Biological System, 1(2), 96–109. https://doi.org/10.70176/3007-973X.1019
Sura, M. B., & Cheng, Y. X. (2024). Medicinal plant resin natural products: structural diversity and biological activities. Natural Product Reports, 41(10), 1471-1542.https://doi.org/10.1039/D4NP00007B
Syahbirin, G., Aditianingrum, K. A., & Mohamad, K. (2024). Acute toxicity of ethanol extract of Curcuma zedoaria Rosc (Zingiberaceae) rhizomes on brine shrimp larvae and zebrafish embryos. Jurnal Medik Veterinar, 7(1), 7–18. https://doi.org/10.20473/jmv.vol7.iss1.2024.7-18
Wang, D., Fu, Z., Xing, Y., Tan, Y., Han, L., Yu, H., & Wang, T. (2020). Rapid identification of chemical composition and metabolites of Pingxiao Capsule in vivo using molecular networking and untargeted data-dependent tandem mass spectrometry. Biomedical Chromatography, 34(9), e4882.https://doi.org/10.1002/bmc.4882
Salim, F., Ismail, N. H., Ghani, N. A., Sidik, N. J., Tajuddin, A. M., & Khalil, A. K. B. (2022). Alkaloids and flavonoids compositions of traditional medicinal value plants from Imbak Canyon Conservation Area (ICCA). Malaysian Journal of Chemistry, 24(4), 110–116. https://doi.org/10.55373/mjchem.v24i4.110
Salim, F., Low, A. L. M., & Al-Mekhlafi, N. A. (2023). Phytochemicals composition of medicinal plants from Kuala Keniam National Park. Malaysian Journal of Chemistry, 25(2), 43–51. https://doi.org/10.55373/mjchem.v25i2.43
Wang, W., & Kannan, K. (2019). Quantitative identification of and exposure to synthetic phenolic antioxidants, including butylated hydroxytoluene, in urine. Environment International, 128, 24–29. https://doi.org/10.1016/j.envint.2019.04.028
Yi, Q., Xu, Z., Thakur, A., Zhang, K., Liang, Q., Liu, Y., & Yan, Y. (2023). Current understanding of plant-derived exosome-like nanoparticles in regulating the inflammatory response and immune system microenvironment. Pharmacological Research, 190, 106733.https://doi.org/10.1016/j.phrs.2023.106733
Yuan, H., Ma, Q., Ye, L., & Piao, G. (2016). The traditional medicine and modern medicine from natural products. Molecules, 21(5), 559.https://doi.org/10.3390/molecules21050559
Zahara, E., Balqis, U., & Soraya, C. (2024). The potential of ethanol extract of Aleurites moluccanus leaves as TNF-α inhibitor in oral incision wound care model. Journal of Human, Earth, and Future, 5(4), 674–687. https://doi.org/10.28991/HEF-2024-05-04-010
Zhang, H., Penninger, J. M., Li, Y., Zhong, N., & Slutsky, A. S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Medicine, 46(4), 586–590. https://doi.org/10.1007/s00134-020-05985-9
Zhang, Q. W., Lin, L. G., & Ye, W. C. (2018). Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine, 13, 1-26. https://doi.org/10.1186/s13020-018-0177-x
Statistics
99 Views | 84 Downloads
How to Cite
Allaq, A., Salim, F., Alsayadi, M., & Sidik, N. (2025). Quantitative GC-MS and HPLC Profiling of n-hexane and Methanol Extracts from Curcuma zedoaria Leaves for Biomedical Applications. International Journal of Advancement in Life Sciences Research, 8(3), 165-177. https://doi.org/https://doi.org/10.31632/ijalsr.2025.v08i03.016