The Role of microRNA-155 in Viral Diseases of Humans
Abstract
MicroRNAs, as key regulators of gene expression, have garnered significant attention in recent antiviral research due to their potential to modulate viral pathogenesis and host immune responses. On account of their potential to regulate gene expression, microRNAs are currently the focus of modern antiviral research. miR-155 is a multifunctional microRNA that plays a significant role in the regulation of the host immune system. Predictably, it also has a profound role in the pathogenesis of numerous viruses. Increasing research has revealed the involvement of miR-155 in various aspects of the host-viral interface. Studies have also shown that miR-155 or its inhibitor could be used as a potential tool in viral therapeutics and diagnostics. The current review aims to highlight viral diseases that have been significantly modulated by miR-155. This was achieved by searching several globally recognised and distinguished scientific databases, followed by data extraction and analysis. This work is particularly important, as exogenous molecular control of miR-155 expression could open new avenues for limiting viral proliferation.
Downloads
References
Anglicheau, D., Muthukumar, T., & Suthanthiran, M. (2010). MicroRNAs: small RNAs with big effects. Transplantation, 90(2), 105-112. https://doi.org/10.1097/tp.0b013e3181e913c2
Arghiani, N., Nissan, T., & Matin, M. M. (2021). Role of microRNAs in COVID-19 with implications for therapeutics. Biomedicine & Pharmacotherapy, 144, 112247. https://doi.org/10.1016/j.biopha.2021.112247
Awasthi, P., Dwivedi, M., Kumar, D., & Hasan, S. (2022). Insights into intricacies of the latent membrane protein-1 (LMP-1) in EBV-associated cancers. Life Sciences, 313, 121261. https://doi.org/10.1016/j.lfs.2022.121261
Bala, S., Tilahun, Y., Taha, O., Alao, H., Kodys, K., Catalano, D., & Szabo, G. (2012). Increased microRNA-155 expression in the serum and peripheral monocytes in chronic HCV infection. Journal of Translational Medicine, 10(1), 151. https://doi.org/10.1186/1479-5876-10-151
Banerjee, A., Schambach, F., DeJong, C. S., Hammond, S. M., & Reiner, S. L. (2010). MicroRNA-155 inhibits IFN-γ signaling in CD4+ T cells. European Journal of Immunology, 40(1), 225–231. https://doi.org/10.1002/eji.200939592
Bernardo, B. C., Ooi, J. Y. Y. S., Lin, R. C. Y., & McMullen, J. R. (2015). miRNA therapeutics: A new class of drugs with potential therapeutic applications in the heart. Future Medicinal Chemistry, 7(13), 1771–1792. https://doi.org/10.4155/fmc.15.107
Bhela, S., Mulik, S., Gimenez, F., Reddy, P. B., Richardson, R. L., Varanasi, S. K., Jaggi, U., Xu, J., Lu, P. Y., & Rouse, B. T. (2015). Role of MIR 155 in the pathogenesis of herpetic stromal keratitis. American Journal of Pathology, 185(4), 1073–1084. https://doi.org/10.1016/j.ajpath.2014.12.021
Bhela, S., Mulik, S., Reddy, P. B. J., Richardson, R. L., Gimenez, F., Rajasagi, N. K., Veiga-Parga, T., Osmand, A. P., & Rouse, B. T. (2014). Critical role of MicroRNA-155 in herpes simplex encephalitis. The Journal of Immunology, 192(6), 2734–2743. https://doi.org/10.4049/jimmunol.1302326
Bofill-De Ros, X., & Vang Ørom, U. A. (2024). Recent progress in miRNA biogenesis and decay. RNA biology, 21(1), 36-43. https://doi.org/10.1080/15476286.2023.2288741
Cacoub, P., & Comarmond, C. (2016). New insights into HCV-related rheumatologic disorders: A review. Journal of Advanced Research, 8(2), 89–97. https://doi.org/10.1016/j.jare.2016.07.005
Campbell, G., Hills, S., Fischer, M., Jacobson, J., Hoke, C., Hombach, J., Marfin, A., Solomon, T., Tsai, T., Tsui, V., & Ginsburg, A. (2011). Estimated global incidence of Japanese encephalitis: Bulletin of the World Health Organization, 89(10), 766–774. https://doi.org/10.2471/blt.10.085233
Campbell-Yesufu, O. T., & Gandhi, R. T. (2011). Update on Human Immunodeficiency Virus (HIV)-2 infection. Clinical Infectious Diseases, 52(6), 780–787. https://doi.org/10.1093/cid/ciq248
Chandan, K., Gupta, M., & Sarwat, M. (2020). Role of host and Pathogen-Derived MicroRNAs in immune regulation during infectious and inflammatory diseases. Frontiers in Immunology, 10, 3081. https://doi.org/10.3389/fimmu.2019.03081
Chen, L., Ming, X., Li, W., Bi, M., Yan, B., Wang, X., Yang, P., & Yang, B. (2020). The microRNA‐155 mediates hepatitis B virus replication by reinforcing SOCS1 signalling–induced autophagy. Cell Biochemistry and Function, 38(4), 436–442. https://doi.org/10.1002/cbf.3488
Cheng, Y. Q., Ren, J. P., Zhao, J., Wang, J. M., Zhou, Y., Li, G. Y., Moorman, J. P., & Yao, Z. Q. (2015). MicroRNA‐155 regulates interferon‐γ production in natural killer cells via Tim‐3 signalling in chronic hepatitis C virus infection. Immunology, 145(4), 485–497. https://doi.org/10.1111/imm.12463
Cheng, Z., Lin, P., & Cheng, N. (2021). HBV/HIV coinfection: Impact on the development and clinical treatment of liver diseases. Frontiers in Medicine, 8, 713981. https://doi.org/10.3389/fmed.2021.713981
Damania, B., Kenney, S. C., & Raab-Traub, N. (2022). Epstein-Barr virus: Biology and clinical disease. Cell, 185(20), 3652–3670. https://doi.org/10.1016/j.cell.2022.08.026
Das, L. M., Torres-Castillo, M. D. L. A., Gill, T., & Levine, A. D. (2012). TGF-β conditions intestinal T cells to express increased levels of miR-155, associated with down-regulation of IL-2 and itk mRNA. Mucosal Immunology, 6(1), 167–176. https://doi.org/10.1038/mi.2012.60
Dey, R., Soni, K., Saravanan, S., Balakrishnan, P., Kumar, V., Boobalan, J., Solomon, S. S., Scaria, V., Solomon, S., Brahmachari, S. K., & Pillai, B. (2016). Anti-HIV microRNA expression in a novel Indian cohort. Scientific Reports, 6(1), 28279. https://doi.org/10.1038/srep28279
Dickey, L. L., Hanley, T. M., Huffaker, T. B., Ramstead, A. G., O’Connell, R. M., & Lane, T. E. (2017). MicroRNA 155 and viral-induced neuroinflammation. Journal of Neuroimmunology, 308, 17–24. https://doi.org/10.1016/j.jneuroim.2017.01.016
Donyavi, T., Bokharaei-Salim, F., Baghi, H. B., Khanaliha, K., Janat-Makan, M. A., Karimi, B., Nahand, J. S., Mirzaei, H., Khatami, A., Garshasbi, S., Khoshmirsafa, M., & Kiani, S. J. (2021). Acute and post-acute phase of COVID-19: Analyzing expression patterns of miRNA-29a-3p, 146a-3p, 155-5p, and let-7b-3p in PBMC. International Immunopharmacology, 97, 107641. https://doi.org/10.1016/j.intimp.2021.107641
El-Ekiaby, N., Hamdi, N., Negm, M., Ahmed, R., Zekri, A. R., Esmat, G., & Abdelaziz, A. I. (2012). Repressed induction of interferon‐related microRNAs miR‐146a and miR‐155 in peripheral blood mononuclear cells infected with HCV genotype 4. FEBS Open Bio, 2(1), 179–186. https://doi.org/10.1016/j.fob.2012.07.005
Elton, T. S., Selemon, H., Elton, S. M., & Parinandi, N. L. (2012). Regulation of the MIR155 host gene in physiological and pathological processes. Gene, 532(1), 1–12. https://doi.org/10.1016/j.gene.2012.12.009
Escobar, T. M., Kanellopoulou, C., Kugler, D. G., Kilaru, G., Nguyen, C. K., Nagarajan, V., Bhairavabhotla, R. K., Northrup, D., Zahr, R., Burr, P., Liu, X., Zhao, K., Sher, A., Jankovic, D., Zhu, J., & Muljo, S. A. (2014). MIR-155 activates cytokine gene expression in TH17 cells by regulating the DNA-Binding protein JARID2 to relieve Polycomb-Mediated repression. Immunity, 40(6), 865–879. https://doi.org/10.1016/j.immuni.2014.03.014
Faraoni, I., Antonetti, F. R., Cardone, J., & Bonmassar, E. (2009). miR-155 gene: A typical multifunctional microRNA. Biochimica Et Biophysica Acta (BBA) - Molecular Basis of Disease, 1792(6), 497–505. https://doi.org/10.1016/j.bbadis.2009.02.013
Filgueira, L., & Lannes, N. (2019). Review of Emerging Japanese Encephalitis Virus: New Aspects and Concepts about Entry into the Brain and Inter-Cellular Spreading. Pathogens, 8(3), 111. https://doi.org/10.3390/pathogens8030111
Friedländer, M. R., Lizano, E., Houben, A. J., Bezdan, D., Báñez-Coronel, M., Kudla, G., ... & Estivill, X. (2014). Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biology, 15, 1-17. https://doi.org/10.1186/gb-2014-15-4-r57
Ganju, A., Khan, S., Hafeez, B. B., Behrman, S. W., Yallapu, M. M., Chauhan, S. C., & Jaggi, M. (2017). miRNA nanotherapeutics for cancer. Drug Discovery Today, 22(2), 424-432. https://doi.org/10.1016/j.drudis.2016.10.014
Ganta, N. M., Gedda, G., Rathnakar, B., Satyanarayana, M., Yamajala, B., Ahsan, M. J., Jadav, S. S., & Balaraju, T. (2018). A review on HCV inhibitors: Significance of non-structural polyproteins. European Journal of Medicinal Chemistry, 164, 576–601. https://doi.org/10.1016/j.ejmech.2018.12.045
Ge, J., Huang, Z., Liu, H., Chen, J., Xie, Z., Chen, Z., Peng, J., Sun, J., Hou, J., & Zhang, X. (2017). Lower Expression of MicroRNA-155 Contributes to Dysfunction of Natural Killer Cells in Patients with Chronic Hepatitis B. Frontiers in Immunology, 8, 1173. https://doi.org/10.3389/fimmu.2017.01173
German Advisory Committee Blood (Arbeitskreis Blut), Subgroup ‘Assessment of Pathogens Transmissible by Blood'. (2016). Human immunodeficiency virus (HIV). Transfusion Medicine and Hemotherapy, 43(3), 203-222. https://doi.org/10.1159/000445852
Gracias, D. T., Stelekati, E., Hope, J. L., Boesteanu, A. C., Doering, T. A., Norton, J., Mueller, Y. M., Fraietta, J. A., Wherry, E. J., Turner, M., & Katsikis, P. D. (2013). The microRNA miR-155 controls CD8+ T cell responses by regulating interferon signaling. Nature Immunology, 14(6), 593–602. https://doi.org/10.1038/ni.2576
Haasch, D., Chen, Y., Reilly, R. M., Chiou, X. G., Koterski, S., Smith, M. L., Kroeger, P., McWeeny, K., Halbert, D. N., Mollison, K. W., Djuric, S. W., & Trevillyan, J. M. (2002). T cell activation induces a noncoding RNA transcript sensitive to inhibition by immunosuppressant drugs and encoded by the proto-oncogene, BIC. Cellular Immunology, 217(1–2), 78–86. https://doi.org/10.1016/s0008-8749(02)00506-3
Han, Y., Li, Y., & Jiang, Y. (2016). The Prognostic Value of Plasma MicroRNA-155 and MicroRNA-146a Level in Severe Sepsis and Sepsis-Induced Acute Lung Injury Patients. Clinical Laboratory, 62(12), 2355-2360. https://doi.org/10.7754/clin.lab.2016.160511
Hart, M., Kern, F., Fecher-Trost, C., Krammes, L., Aparicio, E., Engel, A., ... & Meese, E. (2024). Experimental capture of miRNA targetomes: disease-specific 3′ UTR library-based miRNA targetomics for Parkinson’s disease. Experimental & Molecular Medicine, 56(4), 935-945. https://doi.org/10.1038/s12276-024-01202-5
Hassan, S. S., El‐Khazragy, N., Elshimy, A. A., Aboelhussein, M. M., Saleh, S. A., Fadel, S., ... & Tamer, N. (2020). In vitro knock‐out of miR‐155 suppresses leukemic and HCV virus loads in pediatric HCV‐4–associated acute lymphoid leukemia: A promising target therapy. Journal of Cellular Biochemistry, 121(4), 2811-2817. https://doi.org/10.1002/jcb.29512
Hill, M., Stapleton, S., Nguyen, P. T., Sais, D., Deutsch, F., Gay, V. C., ... & Tran, N. (2025). The potential regulation of the miR-17–92a cluster by miR-21. The International Journal of Biochemistry & Cell Biology, 178, 106705. https://doi.org/10.1016/j.biocel.2024.106705
Hosseini, E. S., Kashani, N. R., Nikzad, H., Azadbakht, J., Bafrani, H. H., & Kashani, H. H. (2020). The novel coronavirus Disease-2019 (COVID-19): Mechanism of action, detection and recent therapeutic strategies. Virology, 551, 1-9. https://doi.org/10.1016/j.virol.2020.08.011
Hou, L., Liu, W., Zhang, H., Li, R., Liu, M., Shi, H., & Wu, L. (2024). Divergent composition and transposon-silencing activity of small RNAs in mammalian oocytes. Genome Biology, 25(1), 80. https://doi.org/10.1186/s13059-024-03214-w
Hu, B., Guo, H., Zhou, P., & Shi, Z. L. (2021). Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 19(3), 141-154. https://doi.org/10.1038/s41579-020-00459-7
Huffaker, T. B., Hu, R., Runtsch, M. C., Bake, E., Chen, X., Zhao, J., Round, J. L., Baltimore, D., & O’Connell, R. M. (2012). Epistasis between MicroRNAs 155 and 146a during T Cell-Mediated Antitumor Immunity. Cell Reports, 2(6), 1697–1709. https://doi.org/10.1016/j.celrep.2012.10.025
Izzard, L., Ye, S., Jenkins, K., Xia, Y., Tizard, M., & Stambas, J. (2014). miRNA modulation of SOCS1 using an influenza A virus delivery system. Journal of General Virology, 95(9), 1880-1885. https://doi.org/10.1099/vir.0.063834-0
Jafarzadeh, A., Naseri, A., Shojaie, L., Nemati, M., Jafarzadeh, S., Baghi, H. B., Hamblin, M. R., Akhlagh, S. A., & Mirzaei, H. (2021). MicroRNA-155 and antiviral immune responses. International Immunopharmacology, 101, 108188. https://doi.org/10.1016/j.intimp.2021.108188
Jiang, K., Yang, J., Guo, S., Zhao, G., Wu, H., & Deng, G. (2019). Peripheral circulating Exosome-Mediated delivery of MIR-155 as a novel mechanism for acute lung inflammation. Molecular Therapy, 27(10), 1758–1771. https://doi.org/10.1016/j.ymthe.2019.07.003
Jin, C., Cheng, L., Höxtermann, S., Xie, T., Lu, X., Wu, H., Skaletz‐Rorowski, A., Brockmeyer, N., & Wu, N. (2016). MicroRNA‐155 is a biomarker of T‐cell activation and immune dysfunction in HIV‐1‐infected patients. HIV Medicine, 18(5), 354–362. https://doi.org/10.1111/hiv.12470
Kassif-Lerner, R., Zloto, K., Rubin, N., Asraf, K., Doolman, R., Paret, G., & Nevo-Caspi, Y. (2022). MIR-155: A potential biomarker for predicting mortality in COVID-19 patients. Journal of Personalized Medicine, 12(2), 324. https://doi.org/10.3390/jpm12020324
Kim, Y., & Kim, V. N. (2007). Processing of intronic microRNAs. The EMBO Journal, 26(3), 775–783. https://doi.org/10.1038/sj.emboj.7601512
Kohlhaas, S., Garden, O. A., Scudamore, C., Turner, M., Okkenhaug, K., & Vigorito, E. (2009). Cutting edge: the FOXP3 Target MIR-155 contributes to the development of regulatory T cells. The Journal of Immunology, 182(5), 2578–2582. https://doi.org/10.4049/jimmunol.0803162
Kooshkaki, O., Derakhshani, A., Conradie, A. M., Hemmat, N., Barreto, S. G., Baghbanzadeh, A., Singh, P. K., Safarpour, H., Asadzadeh, Z., Najafi, S., Brunetti, O., Racanelli, V., Silvestris, N., & Baradaran, B. (2020). Coronavirus Disease 2019: A Brief review of the clinical manifestations and pathogenesis to the novel management Approaches and Treatments. Frontiers in Oncology, 10, 572329. https://doi.org/10.3389/fonc.2020.572329
Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., & Tuschl, T. (2002). Identification of Tissue-Specific MicroRNAs from Mouse. Current Biology, 12(9), 735–739. https://doi.org/10.1016/s0960-9822(02)00809-6
Li, M., Marin-Muller, C., Bharadwaj, U., Chow, K. H., Yao, Q., & Chen, C. (2009). MicroRNAs: control and loss of control in human physiology and disease. World Journal of Surgery, 33, 667-684. https://doi.org/10.1007/s00268-008-9836-x
Lu, F., Weidmer, A., Liu, C., Volinia, S., Croce, C. M., & Lieberman, P. M. (2008). Epstein-Barr Virus-Induced MIR-155 attenuates NF-ΚB signaling and stabilizes latent virus persistence. Journal of Virology, 82(21), 10436–10443. https://doi.org/10.1128/jvi.00752-08
Mahesh, G., & Biswas, R. (2019). MicroRNA-155: a master regulator of inflammation. Journal of Interferon & Cytokine Research, 39(6), 321–330. https://doi.org/10.1089/jir.2018.0155
Momen-Heravi, F., Bala, S., Bukong, T., & Szabo, G. (2014). Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages. Nanomedicine Nanotechnology Biology and Medicine, 10(7), 1517–1527. https://doi.org/10.1016/j.nano.2014.03.014
Mulik, S., Xu, J., Reddy, P. B., Rajasagi, N. K., Gimenez, F., Sharma, S., Lu, P. Y., & Rouse, B. T. (2012). Role of miR-132 in Angiogenesis after Ocular Infection with Herpes Simplex Virus. American Journal of Pathology, 181(2), 525–534. https://doi.org/10.1016/j.ajpath.2012.04.014
Nguyen, M. H., Wong, G., Gane, E., Kao, J., & Dusheiko, G. (2020). Hepatitis B Virus: Advances in Prevention, diagnosis, and therapy. Clinical Microbiology Reviews, 33(2), 10-1128. https://doi.org/10.1128/cmr.00046-19
O’Connell, R. M., Taganov, K. D., Boldin, M. P., Cheng, G., & Baltimore, D. (2007). MicroRNA-155 is induced during the macrophage inflammatory response. Proceedings of the National Academy of Sciences, 104(5), 1604–1609. https://doi.org/10.1073/pnas.0610731104
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical research ed.), 372. https://doi.org/10.1136/bmj.n71
Pareek, S., Roy, S., Kumari, B., Jain, P., Banerjee, A., & Vrati, S. (2014). MiR-155 induction in microglial cells suppresses Japanese encephalitis virus replication and negatively modulates innate immune responses. Journal of Neuroinflammation, 11, 1-13. https://doi.org/10.1186/1742-2094-11-97
Peng, X., Wang, Q., Li, W., Ge, G., Peng, J., Xu, Y., Yang, H., Bai, J., & Geng, D. (2023). Comprehensive overview of microRNA function in rheumatoid arthritis. Bone Research, 11(1), 8. https://doi.org/10.1038/s41413-023-00244-1
Peng, Y., & Croce, C. M. (2016). The role of MicroRNAs in human cancer. Signal Transduction and Targeted Therapy, 1(1), 1-9. https://doi.org/10.1038/sigtrans.2015.4
Rastogi, M., & Singh, S. K. (2020). Japanese Encephalitis Virus exploits microRNA-155 to suppress the non-canonical NF-κB pathway in human microglial cells. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1863(11). https://doi.org/10.1016/j.bbagrm.2020.194639
Roizman, B., & Whitley, R. J. (2013). An Inquiry into the Molecular Basis of HSV Latency and Reactivation. Annual Review of Microbiology, 67(1), 355–374. https://doi.org/10.1146/annurev-micro-092412-155654
Ruelas, D. S., Chan, J. K., Oh, E., Heidersbach, A. J., Hebbeler, A. M., Chavez, L., Verdin, E., Rape, M., & Greene, W. C. (2015). MicroRNA-155 reinforces HIV latency. Journal of Biological Chemistry, 290(22), 13736-13748. https://doi.org/10.1074/jbc.m115.641837
Rupaimoole, R., & Slack, F. J. (2017). MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nature Reviews Drug Discovery, 16(3), 203-222. https://doi.org/10.1038/nrd.2016.246
Sarkar, N., & Chakravarty, R. (2015). Hepatitis B virus infection, microRNAs and liver disease. International Journal of Molecular Sciences, 16(8), 17746-17762. https://doi.org/10.3390/ijms160817746
Sarkar, N., Panigrahi, R., Pal, A., Biswas, A., Singh, S. P., Kar, S. K., Bandopadhyay, M., Das, D., Saha, D., Kanda, T., Sugiyama, M., Chakrabarti, S., Banerjee, A., & Chakravarty, R. (2015). Expression of microRNA‐155 correlates positively with the expression of Toll‐like receptor 7 and modulates hepatitis B virus via C/EBP‐β in hepatocytes. Journal of Viral Hepatitis, 22(10), 817–827. https://doi.org/10.1111/jvh.12390
Segert, J. A., Gisselbrecht, S. S., & Bulyk, M. L. (2021). Transcriptional silencers: driving gene expression with the brakes on. Trends in Genetics, 37(6), 514-527. https://doi.org/10.1016/j.tig.2021.02.002
Shang, R., Lee, S., Senavirathne, G., & Lai, E. C. (2023). microRNAs in action: biogenesis, function and regulation. Nature Reviews Genetics, 24(12), 816–833. https://doi.org/10.1038/s41576-023-00611-y
Shannon-Lowe, C., Rickinson, A. B., & Bell, A. I. (2017). Epstein–Barr virus-associated lymphomas. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1732). https://doi.org/10.1098/rstb.2016.027
Shen, S., Jiang, H., Zhao, J., & Shi, Y. (2020). Down-regulation of miR-155 inhibits inflammatory response in human pulmonary microvascular endothelial cells infected with influenza A virus by targeting sphingosine-1-phosphate receptor 1. Chinese Medical Journal, 133(20), 2429-2436. https://doi.org/10.1097/cm9.0000000000001036
Singhal, T. (2020). A Review of Coronavirus Disease-2019 (COVID-19). The Indian Journal of Pediatrics, 87(4), 281–286. https://doi.org/10.1007/s12098-020-03263-6
Soni, D. K., Cabrera-Luque, J., Kar, S., Sen, C., Devaney, J., & Biswas, R. (2020). Suppression of miR-155 attenuates lung cytokine storm induced by SARS-CoV-2 infection in human ACE2-transgenic mice. BioRxiv, 2020-12. https://doi.org/10.1101/2020.12.17.423130
Su, C., Hou, Z., Zhang, C., Tian, Z., & Zhang, J. (2011). Ectopic expression of microRNA-155 enhances innate antiviral immunity against HBV infection in human hepatoma cells. Virology Journal, 8(1), 354. https://doi.org/10.1186/1743-422x-8-354
Swaminathan, G., Rossi, F., Sierra, L., Gupta, A., Navas-Martín, S., & Martín-García, J. (2012). A role for microRNA-155 modulation in the Anti-HIV-1 effects of Toll-Like receptor 3 stimulation in macrophages. PLoS Pathogens, 8(9), e1002937. https://doi.org/10.1371/journal.ppat.1002937
Tang, L. S. Y., Covert, E., Wilson, E., & Kottilil, S. (2018). Chronic hepatitis B infection. JAMA, 319(17), 1802-1813. https://doi.org/10.1001/jama.2018.3795
Thompson, J. W., Hu, R., Huffaker, T. B., Ramstead, A. G., Ekiz, H. A., Bauer, K. M., ... & O’Connell, R. M. (2023). MicroRNA-155 plays selective cell-intrinsic roles in brain-infiltrating immune cell populations during neuroinflammation. The Journal of Immunology, 210(7), 926-934. https://doi.org/10.4049/jimmunol.2200478
Thounaojam, M. C., Kundu, K., Kaushik, D. K., Swaroop, S., Mahadevan, A., Shankar, S. K., & Basu, A. (2014). MicroRNA 155 regulates Japanese encephalitis Virus-Induced inflammatory response by targeting SRC homology 2-Containing inositol phosphatase 1. Journal of Virology, 88(9), 4798–4810. https://doi.org/10.1128/jvi.02979-13
Tiwari, A., Mukherjee, B., & Dixit, M. (2018). MicroRNA key to angiogenesis regulation: MiRNA biology and therapy. Current cancer drug targets, 18(3), 266-277. https://doi.org/10.2174/1568009617666170630142725
Wang, F., Kikutani, H., Tsang, S. F., Kishimoto, T., & Kieff, E. (1991). Epstein-Barr virus nuclear protein 2 transactivates a cis-acting CD23 DNA element. Journal of Virology, 65(8), 4101–4106. https://doi.org/10.1128/jvi.65.8.4101-4106.1991
Wang, J. P., Bowen, G. N., Zhou, S., Cerny, A., Zacharia, A., Knipe, D. M., Finberg, R. W., & Kurt-Jones, E. A. (2011). Role of specific innate immune responses in herpes simplex virus infection of the central nervous system. Journal of Virology, 86(4), 2273–2281. https://doi.org/10.1128/jvi.06010-11
Wang, L., Toomey, N. L., Diaz, L. A., Walker, G., Ramos, J. C., Barber, G. N., & Ning, S. (2011). Oncogenic IRFs Provide a Survival Advantage for Epstein-Barr Virus- or Human T-Cell Leukemia Virus Type 1-Transformed Cells through Induction of BIC Expression. Journal of Virology, 85(16), 8328–8337. https://doi.org/10.1128/jvi.00570-11
Wang, P., Hou, J., Lin, L., Wang, C., Liu, X., Li, D., Ma, F., Wang, Z., & Cao, X. (2010). Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. The Journal of Immunology, 185(10), 6226–6233. https://doi.org/10.4049/jimmunol.1000491
Wang, Z., Li, K., Wang, X., & Huang, W. (2019). MiR-155-5p modulates HSV-1 replication via the epigenetic regulation of SRSF2 gene expression. Epigenetics, 14(5), 494–503. https://doi.org/10.1080/15592294.2019.1600388
Whitley, R. J. (2006). Herpes simplex encephalitis: adolescents and adults. Antiviral Research, 71(2-3), 141-148. https://doi.org/10.1016/j.antiviral.2006.04.002
Whitley, R. J., Soong, S. J., Linneman, C., Liu, C., Pazin, G., & Alford, C. A. (1982). Herpes simplex encephalitis: clinical assessment. JAMA, 247(3), 317-320. https://doi.org/10.1001/jama.1982.03320280037026
Widiasta, A., Sribudiani, Y., Nugrahapraja, H., Hilmanto, D., Sekarwana, N., & Rachmadi, D. (2020). Potential role of ACE2-related microRNAs in COVID-19-associated nephropathy. Non-coding RNA Research, 5(4), 153–166. https://doi.org/10.1016/j.ncrna.2020.09.001
Wood, C. D., Carvell, T., Gunnell, A., Ojeniyi, O. O., Osborne, C., & West, M. J. (2018). Enhancer control of MicroRNA MIR-155 expression in Epstein-Barr Virus-Infected B cells. Journal of Virology, 92(19), 10-1128. https://doi.org/10.1128/jvi.00716-18
Xiao, T., Ling, M., Xu, H., Luo, F., Xue, J., Chen, C., Bai, J., Zhang, Q., Wang, Y., Bian, Q., & Liu, Q. (2019). NF-κB-regulation of miR-155, via SOCS1/STAT3, is involved in the PM2.5-accelerated cell cycle and proliferation of human bronchial epithelial cells. Toxicology and Applied Pharmacology, 377, 114616. https://doi.org/10.1016/j.taap.2019.114616
Xie, Z., Qu, Y., Shen, P., Wang, B., Wei, K., & Du, B. (2018). PU. 1 attenuates TNF α induced proliferation and cytokine release of rheumatoid arthritis fibroblast like synoviocytes by regulating miR 155 activity. Molecular Medicine Reports, 17(6), 8349-8356. https://doi.org/10.3892/mmr.2018.8862
Xiong, Q., & Zhang, Y. (2023). Small RNA modifications: Regulatory molecules and potential applications. Journal of Hematology & Oncology, 16(1), 64. https://doi.org/10.1186/s13045-023-01466-w
Xu, D., Zhao, L., Del Valle, L., Miklossy, J., & Zhang, L. (2008). Interferon regulatory factor 4 is involved in Epstein-Barr virus-mediated transformation of human B lymphocytes. Journal of Virology, 82(13), 6251–6258. https://doi.org/10.1128/JVI.00163-08
Ying, S. Y., Chang, D. C., & Lin, S. L. (2018). The MicroRNA. MicroRNA Protocols, 1-25. https://doi.org/10.1007/978-1-4939-7601-0_1
Yu, S., Deng, H., Li, X., Huang, Y., Xie, D., & Gao, Z. (2016). Expression of microRNA-155 is downregulated in peripheral blood mononuclear cells of chronic hepatitis B patients. Hepatitis Monthly, 16(1), e34483. https://doi.org/10.5812/hepatmon.34483
Yun, S., & Lee, Y. (2013). Japanese encephalitis. Human Vaccines & Immunotherapeutics, 10(2), 263–279. https://doi.org/10.4161/hv.26902
Zeisel, M. B., Barth, H., Schuster, C., & Baumert, T. F. (2009). Hepatitis C virus entry: molecular mechanisms and targets for antiviral therapy. Frontiers in Bioscience (Landmark edition), 14, 3274. https://doi.org/10.2741/3450
Zhang, Y., Wei, W., Cheng, N., Wang, K., Li, B., Jiang, X., & Sun, S. (2012). Hepatitis C virus-induced up-regulation of microRNA-155 promotes hepatocarcinogenesis by activating Wnt signaling. Hepatology, 56(5), 1631–1640. https://doi.org/10.1002/hep.25849
Zhang, Z., Wu, Y., Chen, J., Hu, F., Chen, X., & Xu, W. (2021). Expression of microRNA-155 in circulating T cells is an indicator of immune activation levels in HIV-1 infected patients. HIV Research & Clinical Practice, 22(3), 71–77. https://doi.org/10.1080/25787489.2021.1955196
Zheng, Y., Xiong, S., Jiang, P., Liu, R., Liu, X., Qian, J., Zheng, X., & Chu, Y. (2012). Glucocorticoids inhibit lipopolysaccharide-mediated inflammatory response by downregulating microRNA-155: A novel anti-inflammation mechanism. Free Radical Biology and Medicine, 52(8), 1307–1317. https://doi.org/10.1016/j.freeradbiomed.2012.01.031
Zhou, X., Li, X., & Wu, M. (2018). miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal Transduction and Targeted Therapy, 3(1), 14. https://doi.org/10.1038/s41392-018-0006-9
Zhou, Y., Zhang, P., Zheng, X., Ye, C., Li, M., Bian, P., Fan, C., & Zhang, Y. (2021). miR-155 regulates pro- and anti-inflammatory cytokine expression in human monocytes during chronic hepatitis C virus infection. Annals of Translational Medicine, 9(21), 1618. https://doi.org/10.21037/atm-21-2620
Zhu, S., & Viejo-Borbolla, A. (2021). Pathogenesis and virulence of herpes simplex virus. Virulence, 12(1), 2670–2702. https://doi.org/10.1080/21505594.2021.1982373
Zingale, V. D., Gugliandolo, A., & Mazzon, E. (2021). MIR-155: An important regulator of neuroinflammation. International Journal of Molecular Sciences, 23(1), 90. https://doi.org/10.3390/ijms23010090

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.