Potential of Nephrolepis exaltata as a Promising Antibacterial Agent against Methicillin-Resistant Staphylococcus aureus (MRSA): A Comprehensive in silico and in vitro Study
Abstract
Recently, the emergence of bacteria impenetrable to antibiotics has led to a devastating situation concerning international health. This study identified one of the most threatening bacteria, methicillin-resistant Staphylococcus aureus. The potential antibacterial properties of Neprolepis exaltata include its ability to inhibit the growth of Staphylococcus aureus. Methicillin-resistant Staphylococcus aureus (MRSA) is not effectively susceptible to methicillin antibiotics. Methanolic crude extracts of Neprolepis exaltata were tested against Methicillin-resistant Staphylococcus aureus at 30 μg/mL and 40 μg/mL concentrations using the agar disc diffusion technique; 18 mm and 20 mm inhibition zones were reported. Furthermore, the dilution method, the crude extract's minimum inhibitory concentration (MIC) was tested against Methicillin-resistant Staphylococcus aureus at concentrations of 20, 40, 60, 80, and 100 μg/mL. The MIC value of the crude extract was found to be 40 μg/mL. Furthermore, crude methanolic extracts of Neprolepis exaltata were subjected to GC-MS analysis, and 22 phytochemicals were identified. Compound 2, 3-Diazabicyclo [2.2.1] hept-2-ene, has shown the highest binding affinity of -6.6 kcal/mol based on molecular docking. Molecular dynamics (MD) simulations determine the structural dynamics of the sphingosine kinase 1 complex with ligands (2ME, BEN, ARC). Factors such as RMSD, RMSF, Rg, SASA, and H bonding were examined to investigate the dynamic changes in ligand binding. The RMSD revealed stable equilibration within 10 ns, illustrating stability throughout the 100 ns simulation. The RMSF results indicate that ligand binding influences the flexibility of the protein, as indicated by the lower fluctuations for 2ME and BEN. Ligand binding increased solvent accessibility, and the greater compactness of the complex systems was indicated by Rg and SASA values. The stable interactions of H bonds were examined, and principal component analysis confirmed the lower flexibility of the ligand-bound complexes. The MM-PBSA method revealed the binding affinity of van der Waal energy, electrostatic energy, polar solvation energy, and binding energy of 1MWS-2ME, 1MWS-BEN, and 1MWS-ARC.
Downloads
References
Adejoro, I. A., Babatunde, D. D., &Tolufashe, G. F. (2020). Molecular docking and dynamic simulations of some medicinal plants compounds against SARS-CoV-2: an in-silico study. Journal of Taibah University for Science, 14(1), 1563-1570.https://doi.org/10.6084/m9.figshare.13270759.v1
Ali, T., Basit, A., Karim, A. M., Lee, J. H., Jeon, J. H., Rehman, S. U., & Lee, S. H. (2021). Mutation-based antibiotic resistance mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. Pharmaceuticals, 14(5), 420.https://doi.org/10.3390/ph14050420
Al-Mijalli, S. H., Mrabti, H. N., Abdallah, E. M., Assaggaf, H., Qasem, A., Alenazy, R., ... & El Hachlafi, N. (2025). Acorus calamus as a promising source of new antibacterial agent against Pseudomonas aeruginosa and Staphylococcus aureus: Deciphering volatile compounds and mode of action. Microbial Pathogenesis. 200, 107357.https://doi.org/10.1016/j.micpath.2025.107357
Al-Rubaye, A. F., Kaizal, A. F., & Hameed, I. H. (2017). Phytochemical screening of methanolic leaves extract of Malva sylvestris. International Journal of Pharmacognosy and Phytochemical Research, 9(4), 537-552. http://dx.doi.org/10.25258/phyto.v9i4.8127
Arshad, H. M., Mohiuddin, O. A., & Azmi, M. B. (2012). Comparative in vitro antibacterial analysis of different brands of cefixime against clinical isolates of Staphylococcus aureus and Escherichia coli. Journal of Applied Pharmaceutical Science, 2(1), 109-113. Available at: https://japsonline.com/admin/php/uploads/353_pdf.pdf
Baddour, L. M., Wilson, W. R., Bayer, A. S., Fowler, V. G., Tleyjeh, I. M., Rybak, M. J., ... & Taubert, K. A. (2015). American heart association committee on rheumatic fever, endocarditis, and kawasaki disease of the council on cardiovascular disease in the young, council on clinical cardiology, council on cardiovascular surgery and anesthesia, and stroke council. infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: A scientific statement for healthcare professionals from the American Heart Association. Circulation, 132(15), 1435-86. https://doi.org/10.1161/CIR.0000000000000296
Binjawhar, D. N., Alfaifi, M. Y., El Hamd, M. A., Shati, A. A., Elbehairi, S. E. I., Fayad, E., ... & Hassan, Y. A. (2024). Upgrading the antibacterial and antibiofilm potential of nanoruthenium via encapsulation by thiazolium ionic liquids-functionalized chitosan film. European Polymer Journal, 207, 112822.https://doi.org/10.1016/j.eurpolymj.2024.112822
Bourhia, M., Shahab, M., Zheng, G., Taibi, M., Elbouzidi, A., Salamatullah, A. M., ... &Asehraou, A. (2024). Overcoming methicillin resistance by methicillin-resistant Staphylococcus aureus: Computational evaluation of napthyridine and oxadiazoles compounds for potential dual inhibition of PBP-2a and FemA proteins. Open Chemistry, 22(1), 20240082.https://doi.org/10.1515/chem-2024-0082
Bubonja-Šonje, M., Knežević, S., & Abram, M. (2020). Challenges to antimicrobial susceptibility testing of plantderived polyphenolic compounds. Arhiv za higijenu rada itoksikologiju, 71(4), 300-311.https://doi.org/10.2478/aiht-2020-71-3396
Chai, T. T., Yeoh, L. Y., Ismail, N. M., Ong, H. C., Manan, F. A., & Wong, F. C. (2015). Evaluation of glucosidase inhibitory and cytotoxic potential of five selected edible and medicinal ferns. Tropical Journal of Pharmaceutical Research, 14(3), 449-454. https://doi.org/10.4314/tjpr.v14i3.13
Choi, J. A., Kim, J. Y., Lee, J. Y., Kang, C. M., Kwon, H. J., Yoo, Y. D., ... & Lee, S. J. (2001). Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. International Journal of Oncology, 19(4), 837-844.https://doi.org/10.3892/ijo.19.4.837
Clericuzio, M., Tinello, S., Burlando, B., Ranzato, E., Martinotti, S., Cornara, L., & La Rocca, A. (2012). Flavonoid oligoglycosides from Ophioglossumvulgatum L. having wound healing properties. Planta medica, 78(15), 1639-1644. https://doi.org/10.1055/s-0032-1315149
Dong, L. B., Yang, J., He, J., Luo, H. R., Wu, X. D., Deng, X., ... & Zhao, Q. S. (2012). Lycopalhine A, a novel sterically congested Lycopodium alkaloid with an unprecedented skeleton from Palhinhaeacernua. Chemical Communications, 48(72), 9038-9040. https://doi.org/10.1039/C2CC34676A
Egorova, A., Gatiyatullina, A., Terenzhev, D., Belov, T., &Kalinnikova, T. (2021). Toxic action of substances from male fern Dryopteris filix-mas (L.) Schott (1834) on free-living soil nematode Caenorhabditis elegans Maupas (1900). In E3S Web of Conferences (Vol. 254, p. 09011). EDP Sciences.https://doi.org/10.1051/e3sconf/202125409011
El-Tantawy, M. E., Shams, M. M., & Afifi, M. S. (2016). Chemical composition and biological evaluation of the volatile constituents from the aerial parts of Nephrolepisexaltata (L.) and Nephrolepis cordifolia (L.) C. Presl grown in Egypt. Natural Product Research, 30(10), 1197-1201. https://doi.org/10.1080/14786419.2015.1046070
Etminani, F., Etminani, A., Hasson, S. O., Judi, H. K., Akter, S., & Saki, M. (2023). In silico study of inhibition effects of phytocompounds from four medicinal plants against the Staphylococcus aureus β-lactamase. Informatics in Medicine Unlocked, 37, 101186.http://dx.doi.org/10.1016/j.imu.2023.101186
Fishovitz, J., Hermoso, J. A., Chang, M., & Mobashery, S. (2014). Penicillin‐binding protein 2a of methicillin‐resistant Staphylococcus aureus. IUBMB life, 66(8), 572-577. https://doi.org/10.1002/iub.1289.
Gandhiraj, D., Wesely, E. G., Helan Soundra Rani, M., Arulselvan, P., Sahanapriya, S., & Rajasekara Pandian, M. (2021). Eradication effects of Citrus hystrix (Kaffir lime) against Methicillin-resistant Staphylococcus aureus – An Ethnopharmacology approach. International Research Journal of Plant Science, 12(4), 1-7. http://dx.doi.org/10.14303/irjps.2021.19
Gao, S., Wu, P., Xue, J., Li, H., & Wei, X. (2022). Cytochalasans from the endophytic fungus Diaportheueckerae associated with the fern Pteris vittata. Phytochemistry, 202, 113295.https://doi.org/10.1016/j.phytochem.2022.113295
Gunasekharan, M., Choi, T. I., Rukayadi, Y., Mohammad Latif, M. A., Karunakaran, T., Mohd Faudzi, S. M., & Kim, C. H. (2021). Preliminary insight of pyrrolylated-chalcones as new anti-methicillin-resistant Staphylococcus aureus (Anti-MRSA) agents. Molecules, 26(17). https://doi.org/10.3390/molecules26175314
Gurung, A. B., Ali, M. A., Lee, J., Farah, M. A., & Al-Anazi, K. M. (2021). Molecular docking and dynamics simulation study of bioactive compounds from Ficus carica L. with important anticancer drug targets. PloS One, 16(7), e0254035.https://doi.org/10.1371/journal.pone.0254035
He, Q., Meneely, J., Grant, I. R., Chin, J., Fanning, S., & Situ, C. (2024). Phytotherapeutic potential against MRSA: mechanisms, synergy, and therapeutic prospects. Chinese Medicine, 19(1), 89.https://doi.org/10.1186/s13020-024-00960-8
Ho, R., Girault, J. P., Raharivelomanana, P., & Lafont, R. (2012). E-and Z-isomers of new phytoecdysteroid conjugates from French Polynesian Microsorummembranifolium (Polypodiaceae) fronds. Molecules, 17(10), 11598-11606. https://doi.org/10.3390/molecules171011598
Hu, W. C., Meng, Q. Y., & Wang, C. X. (2016). HPLC fingerprint of Ophioglossumvulgatum L. of traditional Chinese medicine. Chinese Journal of Experimental Traditional Medical Formulae, 22, 61-65. http://dx.doi.org/10.21608/mb.2024.366970
Idrees, M. M., & Saeed, A. (2021). Genetic and molecular mechanisms of multidrug resistance in uropathogens and novel therapeutic combat. Biochemistry of Drug Resistance, 505-538. http://dx.doi.org/10.1007/978-3-030-76320-6_20
Kaur, P., Kumar, M., Singh, A. P., & Kaur, S. (2017). Ethyl acetate fraction of Pteris vittata L. alleviates 2 acetylaminofluorene induced hepatic alterations in male Wistar rats. Biomedicine & Pharmacotherapy, 88, 1080-1089. https://doi.org/10.1016/j.biopha.2017.01.111
Kim, C., Milheiriço, C., Gardete, S., Holmes, M. A., Holden, M. T., de Lencastre, H., & Tomasz, A. (2012). Properties of a novel PBP2A protein homolog from Staphylococcus aureus strain LGA251 and its contribution to the β-lactam-resistant phenotype. Journal of Biological Chemistry, 287(44), 36854-36863. https://doi.org/10.1074/jbc.m112.395962
Manandhar, S., Luitel, S., & Dahal, R. K. (2019). In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. Journal of Tropical Medicine, 2019(1), 1895340.https://doi.org/10.1155/2019/1895340
Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146-157.https://doi.org/10.2174/157340911795677602
Mohamed, S. B., Adlan, T. A., Khalafalla, N. A., Abdalla, N. I., Ali, Z. S., Munir KA, A., ... & Elnour, M. A. B. (2019). Proteomics and docking study targeting penicillin-binding protein and penicillin-binding protein2a of methicillin-resistant Staphylococcus aureus strain SO-1977 isolated from Sudan. Evolutionary Bioinformatics, 15.https://doi.org/10.1177/1176934319864945
Mohammed, M. M., Isa, M. A., Abubakar, M. B., Dikwa, A. S. B., &Kappo, A. P. (2025). Molecular detection of mecA gene from methicillin-resistant Staphylococcus aureus isolated from clinical and environmental samples and its potential inhibition by phytochemicals using in vitro and in silico approach. In Silico Pharmacology, 13(1), 26. https://doi.org/10.1007/s40203-024-00297-y
Morris, G. M., & Lim-Wilby, M. (2008). Molecular Docking. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods Molecular Biology™, 443. Humana Press. https://doi.org/10.1007/978-1-59745-177-2_19
Mustafa, G., Mehmood, R., Mahrosh, H. S., Mehmood, K., & Ahmed, S. (2022). Investigation of Plant Antimicrobial Peptides against Selected Pathogenic Bacterial Species Using a Peptide‐Protein Docking Approach. BioMed Research International, 2022(1), 1077814.https://doi.org/10.1155/2022/1077814
Normile, D. (2003). The new face of traditional Chinese medicine. Science, 299(5604), 188-190.https://doi.org/10.1126/science.299.5604.188
Ouandaogo, H. S., Diallo, S., Odari, E., & Kinyua, J. (2023). Phytochemical screening and GC-MS analysis of methanolic and aqueous extracts of Ocimum kilimandscharicum leaves. ACS omega, 8(50), 47560-47572. https://doi.org/10.1021/acsomega.3c05554
Peacock, S. J., & Paterson, G. K. (2015). Mechanisms of methicillin resistance in Staphylococcus aureus. Annual Review of Biochemistry, 84(1), 577-601. https://doi.org/10.1146/annurev-biochem-060614-034516
Pietta, P. G. (2000). Flavonoids as antioxidants. Journal of natural products, 63(7), 1035-1042. https://doi.org/10.1021/np9904509
Razaghi, P., & Abdel-Azeem, A. M. (2024). Diversity of endophytic fungi hosted medicinal ferns: Biotechnological potentials and possible applications. Microbial Biosystems, 9(1), 105-128. https://dx.doi.org/10.21608/mb.2024.366970
Salazar-Chacon, Y., Gutierrez-Bolaños, M. J., Padilla-Cordero, J., Vidaurre-Rodriguez, C., Carvajal-Miranda, Y., Rojas-Alvarado, A., ... & Jiménez-Bonilla, P. (2024). Exploration of photoprotective and antibiotic activity of wild Polypodiaceae ferns from Costa Rica. Scientific Reports, 14(1), 1602.https://doi.org/10.1038/s41598-023-50281-3
Samad, A., Meghla, N. S., Nain, Z., Karpiński, T. M., & Rahman, M. S. (2022). Immune epitopes identification and designing of a multi-epitope vaccine against bovine leukemia virus: a molecular dynamics and immune simulation approaches. Cancer Immunology, Immunotherapy, 71(10), 2535-2548.https://doi.org/10.1007/s00262-022-03181-w
Schroeter, H., Spencer, J. P., Rice-Evans, C., & Williams, R. J. (2001). Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochemical Journal, 358(3), 547-557. https://doi.org/10.1042/0264-6021:3580547
Septama, A. W., &Panichayupakaranant, P. (2015). Antibacterial assay-guided isolation of active compounds from Artocarpus heterophyllus heartwoods. Pharmaceutical Biology,53(11), 1608-1613. https://doi.org/10.3109/13880209.2014.996819
Sharma, D. K., Dave, R. S., & Shah, K. R. (2021). Phytochemical screening and characterization of volatile compounds by gas chromatography-mass spectrometry from “Nephrolepisexaltata”. Asian J. Pharm. Clin. Res, 14, 93-98.http://dx.doi.org/10.22159/ajpcr.2021.v14i7.41869
Soare, L. C., Ferdes, M., Stefanov, S., Denkova, Z., Nicolova, R., Denev, P., Bejan, C., & Paunescu, A. (2012). Antioxidant activity, polyphenols content and antimicrobial activity of several native pteridophytes of Romania. NotulaeBotanicae Horti Agrobotanici Cluj-Napoca, 40, 53-57. https://doi.org/10.15835/nbha4016648
Socolsky, C., Asakawa, Y., &Bardón, A. (2007). Diterpenoid glycosides from the bitter fern Gleicheniaquadripartita. Journal of Natural Products, 70(12), 1837-1845. https://doi.org/10.1021/np070119m
Socolsky, C., Domínguez, L., Asakawa, Y., &Bardón, A. (2012). Unusual terpenylated acylphloroglucinols from Dryopteris wallichiana. Phytochemistry, 80, 115-122. https://doi.org/10.1016/j.phytochem.2012.04.017
Stapleton, P. D., & Taylor, P. W. (2002). Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Science progress, 85(1), 57-72. https://doi.org/10.3184/003685002783238870
Swain, S. S., Nayak, S., Mishra, S., Ghana, M., & Dash, D. (2025). Exploring the plant growth promoting attributes of pteridophyte-associated microbiome for agricultural sustainability. Physiology and Molecular Biology of Plants, 31, 211–232. https://doi.org/10.1007/s12298-025-01553-x
Tabassum, R., Kousar, S., Mustafa, G., Jamil, A., & Attique, S. A. (2023). In Silico Method for the Screening of Phytochemicals against Methicillin‐Resistant Staphylococcus Aureus. BioMed Research International, 2023(1), 5100400. https://doi.org/10.1155/2023/5100400
Valarmathi, R., Natarajan, D., Suryadevara, N., Hasan Maziz, M. N., Nanthiney Devi Ragavan, C. A., & Vairavan, C. N. (2023). GC-MS analysis and antibacterial activity of Dryopteris hirtipes (Blumze) Kuntze Linn. Journal of Survey in Fisheries Sciences, 10, 3718–3726. Available at: https://sifisheriessciences.com/journal/index.php/journal/article/view/815
Wan, C. X., Luo, J. G., Guo, C., & Kong, L. Y. (2012). 3‐O‐Methylquercetin glucosides from Ophioglossumpedunculosum and inhibition of lipopolysaccharide‐induced nitric oxide production in RAW 264.7 macrophages. Helvetica Chimica Acta, 95(9), 1586-1592. https://doi.org/10.1002/hlca.201100500
Xia, X., Cao, J., Zheng, Y., Wang, Q., & Xiao, J. (2014). Flavonoid concentrations and bioactivity of flavonoid extracts from 19 species of ferns from China. Industrial Crops and Products, 58, 91-98. https://doi.org/10.1016/j.indcrop.2014.04.005
Yoshizumi, M., Tsuchiya, K., Kirima, K., Kyaw, M., Suzaki, Y., & Tamaki, T. (2001). Quercetin inhibits Shc-and phosphatidylinositol 3-kinase-mediated c-Jun N-terminal kinase activation by angiotensin II in cultured rat aortic smooth muscle cells. Molecular Pharmacology, 60(4), 656-665.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.